
Test-Driven Development
By Example

Kent Beck, Three Rivers Institute

Copyright (c) 2002, Kent Beck, All rights reserved
Draft July 14, 2002 1:31 pm

To Do:
Refactorings
Opening story
To-do lists, cross outs and move them to the margin
Glossary definitions
Where does factorial example go?
Ref Fowler’s new book
Cross refs for patterns
Code paragraph style throughout
Gray keywords
Influence diagrams
Leading tabs in code
private class Pair keyword highlighting
Final code formatting
Reset to-do lists
Bold deltas in code

CHAPTER 3 Preface viii

CHAPTER 4 Acknowledgements xiv

CHAPTER 1 Story Time 1

CHAPTER 2 Section I: Money Example 5

CHAPTER 3 Money Example 7

CHAPTER 4 Degenerate Objects 15

CHAPTER 5 Equality for All 19

CHAPTER 6 Privacy 23

CHAPTER 7 Franc-ly Speaking 27

CHAPTER 8 Equality for All, Redux 31

CHAPTER 9 Apples and Oranges 37

CHAPTER 10 Makin’ Objects 39

CHAPTER 11 Times We’re Livin’ In 43

CHAPTER 12 Interesting Times 49
iv

v

CHAPTER 13 The Root of all Evil 55

CHAPTER 14 Addition, Finally 57

CHAPTER 15 Make It 63

CHAPTER 16 Change 71

CHAPTER 17 Mixed Currencies 77

CHAPTER 18 Abstraction, Finally 81

CHAPTER 19 Money Retrospective 85

CHAPTER 20 Section II: xUnit 93

CHAPTER 21 Set the Table 99

CHAPTER 22 Cleaning Up After 103

CHAPTER 23 Counting 107

CHAPTER 24 Dealing with Failure 111

CHAPTER 25 How Suite It Is 115

CHAPTER 26 xUnit Retrospective 121

CHAPTER 27 Section III: Patterns 123

CHAPTER 28 Test-Driven Development
Patterns 125

CHAPTER 29 Red Bar Patterns 135

CHAPTER 30 Testing Patterns 145

CHAPTER 31 Green Bar Patterns 153

CHAPTER 32 xUnit Patterns 161

CHAPTER 33 Design Patterns 171

CHAPTER 34 Refactoring 189

CHAPTER 35 Mastering TDD 201

CHAPTER 36 Glossary 215

CHAPTER 37 Appendix 1: Influence
Diagrams 217

CHAPTER 38 Fibonacci 221
vi

vii

CHAPTER 3 Preface
Clean code that works, in Ron Jeffries’ pithy phrase. The goal is clean code that
works, and for a whole bunch of reasons:

• Clean code that works is a predictable way to develop. You know when you are
finished, without having to worry about a long bug trail.

• Clean code that works gives you a chance to learn all the lessons that the code
has to teach you. If you only ever slap together the first thing you think of, you
never have time to think of a second, better, thing.

• Clean code that works improves the lives of users of our software.

• Clean code that works lets your teammates count on you, and you on them.

• Writing clean code that works feels good.

But how do you get to clean code that works? Many forces drive you away from
clean code, and even code that works. Without taking too much counsel of our
fears, here’s what we do—drive development with automated tests, a style of devel-
opment called “Test-Driven Development” (TDD for short). In Test-Driven Devel-
opment, you:

• Write new code only if you first have a failing automated test.

• Eliminate duplication.
Test-Driven Development viii

Preface

ix
Two simple rules, but they generate complex individual and group behavior. Some
of the technical implications are:

• You must design organically, with running code providing feedback between
decisions

• You must write your own tests, since you can’t wait twenty times a day for
someone else to write a test

• Your development environment must provide rapid response to small changes

• Your designs must consist of many highly cohesive, loosely coupled compo-
nents, just to make testing easy

The two rules imply an order to the tasks of programming:

1. Red—write a little test that doesn’t work, perhaps doesn’t even compile at first

2. Green—make the test work quickly, committing whatever sins necessary in the
process

3. Refactor—eliminate all the duplication created in just getting the test to work

Red/green/refactor. The TDDs mantra.

Assuming for the moment that such a style is possible, it might be possible to dra-
matically reduce the defect density of code and make the subject of work crystal
clear to all involved. If so, writing only code demanded by failing tests also has
social implications:

• If the defect density can be reduced enough, QA can shift from reactive to pro-
active work

• If the number of nasty surprises can be reduced enough, project managers can
estimate accurately enough to involve real customers in daily development

• If the topics of technical conversations can be made clear enough, programmers
can work in minute-by-minute collaboration instead of daily or weekly collabo-
ration

• Again, if the defect density can be reduced enough, we can have shippable soft-
ware with new functionality every day, leading to new business relationships
with customers

So, the concept is simple, but what’s my motivation? Why would a programmer
take on the additional work of writing automated tests? Why would a programmer
work in tiny little steps when their mind is capable of great soaring swoops of
design? Courage.
Test-Driven Development

Courage

Test-driven development is a way of managing fear during programming. I don’t
mean fear in a bad way, pow widdle prwogwammew needs a pacifiew, but fear in
the legitimate, this-is-a-hard-problem-and-I-can’t-see-the-end-from-the-beginning
sense. If pain is nature’s way of saying “Stop!”, fear is nature’s way of saying “Be
careful.” Being careful is good, but fear has a host of other effects:

• Makes you tentative

• Makes you want to communicate less

• Makes you shy from feedback

• Makes you grumpy

None of these effects are helpful when programming, especially when program-
ming something hard. So, how can you face a difficult situation and:

• Instead of being tentative, begin learning concretely as quickly as possible.

• Instead of clamming up, communicate more clearly.

• Instead of avoiding feedback, search out helpful, concrete feedback.

• (You’ll have to work on grumpiness on your own.)

Imagine programming as turning a crank to pull a bucket of water from a well.
When the bucket is small, a free-spinning crank is fine. When the bucket is big and
full of water, you’re going to get tired before the bucket is all the way up. You need
a ratchet mechanism to enable you to rest between bouts of cranking. The heavier
the bucket, the closer the teeth need to be on the ratchet.

The tests in test-driven development are the teeth of the ratchet. Once you get one
test working, you know it is working, now and forever. You are one step closer to
having everything working than you were when the test was broken. Now get the
next one working, and the next, and the next. By analogy, the tougher the program-
ming problem, the less ground should be covered by each test.

Readers of Extreme Programming Explained will notice a difference in tone
between XP and TDD. TDD isn’t an absolute like Extreme Programming. XP says,
“Here are things you must be able to do to be prepared to evolve further.” TDD is a
little fuzzier. TDD is an awareness of the gap between decision and feedback dur-
ing programming, and techniques to control that gap. “What if I do a paper design
for a week, then test-drive the code? Is that TDD?” Sure, it’s TDD. You were aware
of the gap between decision and feedback and you controlled the gap deliberately.
Test-Driven Development x

Preface

xi
That said, most people who learn TDD find their programming practice changed
for good. “Test Infected” is the phrase Erich Gamma coined to describe this shift.
You might find yourself writing more tests earlier, and working in smaller steps
than you ever dreamed would be sensible. On the other hand, some programmers
learn TDD and go back to their earlier practices, reserving TDD for special occa-
sions when ordinary programming isn’t making progress.

There are certainly programming tasks that can’t be driven solely by tests (or at
least, not yet). Security software and concurrency, for example, are two topics
where TDD is not sufficient to mechanically demonstrate that the goals of the soft-
ware have been met. Security relies on essentially defect-free code, true, but also on
human judgement about the methods used to secure the software. Subtle concur-
rency problems can’t be reliably duplicated by running the code.

Once you are finished reading this book, you should be ready to:

• Start simply

• Write automated tests

• Refactor to add design decisions one at a time

This book is organized into three sections.

• An example of writing typical model code using TDD. The example is one I got
from Ward Cunningham years ago, and have used many times since, multi-cur-
rency arithmetic. In it you will learn to write tests before code and grow a
design organically.

• An example of testing more complicated logic, including reflection and excep-
tions, by developing a framework for automated testing. This example also
serves to introduce you to the xUnit architecture that is at the heart of many pro-
grammer-oriented testing tools. In the second example you will learn to work in
even smaller steps than in the first example, including the kind of self-referen-
tial hooha beloved of computer scientists.

• Patterns for TDD. Included are patterns for the deciding what tests to write, how
to write tests using xUnit, and a greatest hits selection of the design patterns and
refactorings used in the examples.

I wrote the examples imagining a pair programming session. If you like looking at
the map before wandering around, you may want to go straight to the patterns in
section 3 and use the examples as illustrations. If you prefer just wandering around
and then looking at the map to see where you’ve been, try reading the examples
Test-Driven Development

through and refering to the patterns when you want more detail about a technique,
then using the patterns as a reference.

Several reviewers have commented they got the most out of the examples when
they started up a programming environment and entered the code and ran the tests
as they read.

A note about the examples. Both examples, multi-currency calculation and a testing
framework, appear simple. There are (and I have seen) complicated, ugly, messy
ways of solving the same problems. I could have chosen one of those complicated,
ugly, messy solutions, to give the book an air of “reality.” However, my goal, and I
hope your goal, is to write clean code that works. Before teeing off on the examples
as being too simple, spend 15 seconds imagining a programming world in which all
code was this clear and direct, where there were no complicated solutions, only
apparently complicated problems begging for careful thought. TDD is a practice
that can help you lead yourself to exactly that careful thought.
Test-Driven Development xii

Preface

xiii
 Test-Driven Development

CHAPTER 4 Acknowledgements
Thanks to all my many brutal and opinionated reviewers. I take full responsibility
for the contents, but this book would have been much less readable and useful with-
out their help. In the order in which I typed them in, they were: Steve Freeman,
Frank Westphal, Ron Jeffries, Dierk König, Edward Hieatt, Tammo Freese, Jim
Newkirk, Johannes Link, Manfred Lange, Steve Hayes, Alan Francis, Jonathan
Rasmusson, Shane Clauson, Simon Crase, Kay Pentecost, Murray Bishop, Ryan
King, Bill Wake, Edmund Schweppe, Kevin Lawrence, John Carter, Phlip, Peter
Hansen, Ben Schroeder, Alex Chaffee, Peter van Rooijen, Rick Kawala, Mark van
Hamersveld, Doug Swartz, Laurent Bossavit, Ilja Preuß, Daniel Le Berre, Frank
Carver, Justin Sampson, Mike Clark, Christian Pekeler, Karl Scotland, Carl Manas-
ter, J. B. Rainsberger, Peter Lindberg, Darach Ennis, Kyle Cordes, Justin Sampson,
Patrick Logan, Darren Hobbs, Aaron Sansone, Darach Ennis, Syver Enstad, Shi-
nobu Kawai, Erik Meade, Patrick Logan, Dan Rawsthorne, Bill Rutiser, Eric Her-
man, Paul Chisholm, Asim Jalis, Ivan Moore, Levi Purvis, Rick Mugridge,
Anthony Adachi, Nigel Thorne, John Bley, Kari Hoijarvi, Manuel Amago, Kaoru
Hosokawa, Pat Eyler, Ross Shaw, Sam Gentle, Jean Rajotte, Phillipe Antras, Jaime
Nino,

To all of the programmers I’ve test-driven code with, I certainly appreciate your
patience going along with what was a pretty crazy sounding idea, especially in the
early years. I’ve learned far more from you all than I could ever think of myself.
Not wishing to offend everyone else, but Massimo Arnoldi, Ralph Beattie, Ron Jef-
xiv

Acknowledgements

xv
fries, Martin Fowler, and last but certainly not least Erich Gamma stand out in my
memory as test drivers from whom I’ve learned much.

I would like to thank Martin Fowler for timely Framemaker help. He must be the
highest-paid typesetting consultant on the planet, but fortunately he has let me (so
far) run a tab.

My life as a real programmer started with patient mentoring from and continuing
collaboration with Ward Cunningham. Sometimes I see TDD as an attempt to give
any programmer, working in any environment, the sense of comfort and intimacy
we had with our Smalltalk environment and our Smalltalk programs. There is no
way to sort out the source of ideas once two people have shared a brain. If you
assume all the good ideas here are Ward’s, you won’t be far wrong.

It is a bit of a cliché to recognize the sacrifices a family makes once one of its mem-
bers catches the peculiar mental affliction that results in a book. It is a cliché
because family sacrifices are as necessary to book writing as paper. To my children
who waited breakfast until I could finish a chapter, and most of all to my wife who
spent two months saying everything three times, my profoundest and least adequate
thanks.

Finally, to the unknown author of the book which I read as a weird 12-year-old that
suggested you type in the expected output tape from a real input tape, then code
until the actual results matched the expected result, thank you, thank you, thank
you.

CHAPTER 1 Story Time
Early one Friday the boss came to Ward to introduce him to Peter, a prospective
customer for WyCash, the bond portfolio management system they were selling.
Peter said, “I’m very impressed with the functionality I see. However, I notice you
only handle US dollar denominated bonds. I’m starting a new bond fund and my
strategy requires that I handle bonds in different currencies.” The boss turned to
Ward, “Well, can we do it?”

Here is the nightmare scenario for any software designer. You have been cruising
along happily and successfully with a set of assumptions. Suddenly, everything
changes. And the nightmare wasn’t just for Ward. The boss, an experienced hand at
directing software development, wasn’t sure what the answer was going to be.

WyCash had been developed over the course of a couple of years by a small team.
It was able to handle most of the varieties of fixed income securities commonly
found on the US market, and a few exotic new instruments, like Guaranteed Invest-
ment Contracts, that the competition couldn’t handle.

WyCash had been developed all along using objects and an object database. The
fundamental abstraction of computation, Dollar, had been outsourced at the begin-
ning to a clever group of programmers. The resulting object combined formatting
and calculation responsibilities.
1

Story Time

2

For the last six months, Ward and the rest of the team had been slowly divesting
Dollar of its responsibilities. The Smalltalk numerical classes turned out to be just
fine at calculation. All the tricky code for rounding to three decimal digits got in the
way of producing precise answers. As the answers got more precise, the compli-
cated mechanisms in the testing framework for comparing to within a certain toler-
ance were replaced by precise matching of expected and actual results.

Responsibility for formatting actually belonged in the user interface classes. As the
tests were written at the level of the user interface classes, in particular the report

framework1, these tests didn’t have to change to accomodate this refinement. After
six months of careful paring, the resulting Dollar didn’t have much responsibility
left.

One of the most complicated algorithms in the system, weighted average, had like-
wise been undergoing a slow transformation. At one time there had been many dif-
ferent variations of weighted average code scattered throughout the system. As the
report framework coalesced from the primodial object soup, it was obvious that
there could be one home for the algorithm, in AveragedColumn.

It was to AveragedColumn that Ward now turned. If weighted averages could be
made multi-currency, the rest of the system should be possible. The heart of the
algorithm was keeping a count of the money in the column. In fact, the algorithm
had been abstracted enough to calculate the weighted average of any object that
could act arithmetic. You could have weighted averages of dates, for example.

The weekend past in the usual weekend activities. Monday morning the boss was
back. “Can we do it?” “Give me another day and I’ll tell you for sure.”

Since Dollar acted like a counter in weighted average, in order to calculate in multi-
ple currencies they needed an object with a counter per currency, kind of like a

polynomial. Instead of 3x2 and 4y3, though, the terms would be 15 USD and 200
CHF.

A quick experiment showed that it was possible to compute with a generic Cur-
rency object instead of a Dollar, and return a PolyCurrency when two un-alike cur-
rencies were added together. The trick now was to make space for the new
functionality without breaking anything that already worked. What would happen if
Ward just ran the tests?

1. For more on the report framework, see c2.com/doc/oopsla91.html

After adding a few un-implemented operations to Currency, the bulk of the tests
passed. By the end of the day, all the tests were passing. Ward checked the code
into the build and went to the boss. “We can do it,” he said confidently.

Let’s think a bit about this story. In two days, the potential market was multiplied
several fold, multiplying the value of WyCash several fold. The ability to create so
much business value so quickly was no accident though. Several factors came into
play:

• Method—Ward and the WyCash team needed to have constant experience
growing the design of the system little-by-little, so the mechanics of the trans-
formation were well practiced.

• Motive—Ward and team had to understand clearly from the business the impor-
tance of making WyCash multi-currency, and to have the courage to start such a
seemingly impossible task.

• Opportunity— The combination of comprehensive, confidence-generating tests;
a well-factored program; and a programming language that made it possible to
isolate design decisions meant that there were few sources of error, and those
errors were easy to identify.

You can’t control whether you ever get the motive to multiply the value of your
project by spinning technical magic. Method and opportunity, however, are entirely
under your control. Ward and his team created method and opportunity by a combi-
nation of superior talent, experience, and discipline. Does this mean that if you are
not one of the ten best software engineers on the planet and you don’t have a wad of
cash in the bank so you can tell your boss to take a hike, you’re going to take the
time to do this right, that such moments are forever beyond your reach?

No. You absolutely can place your projects in a position for you to work magic,
even if you are a programmer with ordinary skills and you sometimes buckle under
and take shortcuts when the pressure builds. Test-driven development is a set of
techniques any programmer can follow, that encourage simple designs and test
suites that inspire confidence. If you are a genius, you don’t need these rules. If you
are a dolt, the rules won’t help. For the vast majority of us in between, though, fol-
lowing these two simple rules can lead us to work much closer to our potential:

• Write a failing automated test before you write any code

• Remove duplication
3

Story Time

4

How exactly to do this, the subtle gradations in applying these rules, and the lengths
to which you can push these two simple rules are the topic of this book. We’ll start
with the object Ward created in his moment of inspiration—multi-currency money.

CHAPTER 2 Section I: Money
Example
In this section we will develop typical model code completely driven by tests
(except when we slip, purely for educational purposes). My goal is for you to see
the rhythm of test-driven development:

1. Quickly add a test

2. Run all tests and see the new one fail

3. Make a little change

4. Run all tests and see them all succeed

5. Refactor to remove duplication

The surprises are likely to be:

• How each test can cover a small increment of functionality

• How small and ugly the changes can be to make the new tests run

• How often the tests are run

• How many teensy tiny steps make up the refactorings
5

Section I: Money Example

6

CHAPTER 3 Money Example
We’ll start with the object Ward created at WyCash, multi-currency money. Sup-
pose we have a report like this:

To make a multi-currency report, we need to add currencies:

We also need to specify exchange rates:

Instrument Shares Price Total

IBM 1000 25 25000

GE 400 100 40000

Total: 65000

Instrument Shares Price Total

IBM 1000 25 USD 25000 USD

Novartis 400 150 CHF 60000 CHF

Total: 65000 USD
7

Money Example

8

$5 + 10 CHF = $10 if rate is 2:
$5 * 2 = $10
What behavior will we need to produce the revised report? Put another way, what is
the set of tests which, when passed, will demonstrate the presence of code we are
confident will compute the report correctly?

• We need to be able to add amounts in two different currencies and convert the
result given a set of exchange rates.

• We need to be able to multiply an amount (price per share) by a number (num-
ber of shares) and receive an amount.

We’ll make a to-do list to remind us what all we need to do, keep us focused, and
tell us when we are finished. When we start working on an item, we’ll make it bold,
like this. When we finish an item we’ll cross it off, like this. When we think of
another test to write, we’ll add it to the list.

As you can see from the list, we’ll work on multiplication first. So, what object do
we need first? Trick question. We don’t start with objects, we start with tests (I
keep having to remind myself of this, so I will pretend you are as dense as I am).

Try again. What test do we need first? Looking at the list, that first test looks com-
plicated. Start small or not at all. Multiplication, how hard could that be? We’ll
work on that first.

When we write a test, we imagine the perfect interface for our operation. We are
telling ourselves a story about how the operation will look from the outside. Our
story won’t always come true, but better to start from the best possible API and
work backwards than to make things complicated, ugly, and “realistic” from the get
go.

Here’s a simple example of multiplication:

public void testMultiplication() {
Dollar five= new Dollar(5);
five.times(2);
assertEquals(10, five.amount);

}

From To Rate

CHF USD 1.5

1

$5 + 10 CHF = $10 if rate is 2:1
$5 * 2 = $10
Make “amount” private
Dollar side-effects?
Money rounding?
(I know, I know, public fields, side-effects, integers for monetary amounts and all
that. Small steps. We’ll make a note of the stinkiness and move on. We have a fail-
ing test and we want it to go green as quickly as possible.)

The test we just typed in (I’ll explain where and how we type it in later, when we
talk more about JUnit) doesn’t even compile. That’s easy enough to fix. What’s the
least we can do to get it to compile, even if it doesn’t run? We have four compile
errors:

• No class “Dollar”

• No constructor

• No method “times(int)”

• No field “amount”

Let’s take them one at a time (I always search for some numerical measure of
progress). We can get rid of one error by defining the class Dollar:

Dollar

class Dollar

3 errors. Now we need the constructor, but it doesn’t have to do anything just to get
the test to compile:

Dollar

Dollar(int amount) {
}

2 errors. We need a stub implementation of times(). Again we’ll do the least work
possible just to get the test to compile:

Dollar

void times(int multiplier) {
}

1 error. Finally, we need an amount field:

Dollar

int amount;
Test Driven Development 9

Money Example

10
Bingo! Now we can run the test and watch it fail.

You are seeing the dreaded red bar. Our testing framework (JUnit, in this case) has
run the little snippet of code we started with, and noticed that although we expected
“10” as a result, we saw “0”. Sadness.

No, no. Failure is progress. Now we have a concrete measure of failure. That’s bet-
ter than just vaguely knowing we are failing. Our programming problem has been
transformed from “give me multi-currency” to “make this test work, and then make
the rest of the tests work.” Much simpler. Much smaller scope for fear. We can
make this test work.

You probably aren’t going to like the solution, but the goal right now is not to get
the perfect answer, the goal is to pass the test. We’ll make our sacrifice at the altar
of truth and beauty later.

Here’s the smallest change I could imagine that would cause our test to pass:

Dollar

int amount= 10;

Now we get the green bar, fabled in song and story.

Oh joy, oh rapture! Not so fast, hacker boy (or girl). The cycle isn’t complete.
There are very few inputs in the world that will cause such a limited, such a smelly,
Test Driven Development 11

Money Example

12
such a naïve implementation to pass. We need to generalize before we move on.
Remember, the cycle is:

1. Add a little test

2. Run all tests and fail

3. Make a little change

4. Run the tests and succeed

5. Refactor to remove duplication

Sidebar: Dependency and Duplication

Steve Freeman pointed out that the problem with the test and code as it sits is not
duplication (which I have not yet pointed out to you, but I promise to as soon as this
digression is over.) The problem is the dependency between the code and the test—
you can’t change one without changing the other. Our goal is to be able to write
another test that “makes sense” to us, without having to change the code, something
that is not possible with the current implementation.

Dependency is the key problem in software development at all scales. If you have
details of one vendor’s implementation of SQL scattered throughout the code and
you decide to change to another vendor, you will discover that your code is depen-
dent on the database vendor. You can’t change the database without changing the
code.

If dependency is the problem, duplication is the symptom. Duplication most often
takes the form of duplicate logic—the same expression appearing in multiple places
in the code. Objects are excellent for abstracting away the duplication of logic.

Unlike most problems in life, where eliminating the symptoms only makes the
problem pop up elsewhere in worse form, eliminating duplication in programs
eliminates dependency. That’s why the second rule appears in TDD. By eliminating
duplication before we go on to the next test, we maximize our chance of being able
to get the next test running with one and only one change.

Now back to your regularly scheduled puzzling example.

We have run items 1-4. Now we are ready to remove duplication. But where is the
duplication? Usually you see duplication between two pieces of code. Here the
duplication is between the data in the test and the data in the code. Don’t see it?
How about if we write?

Dollar

int amount= 5 * 2;

That “10” had to come from somewhere. We did the multiplication in our heads so
fast we didn’t even notice. The “5” and “2” are now in two places, and we must
ruthlessly eliminate duplication before moving on. The rules say so.

There isn’t a single step that will eliminate the 5 and 2. However, what if we move
the setting of the amount from object initialization to the times() method?

Dollar

int amount;

void times(int multiplier) {
amount= 5 * 2;

}

The test still passes, the bar stays green. Happiness is still ours.

Do these steps seem too small to you? Remember, TDD is not about taking teensy
tiny steps, it’s about being able to take teensy tiny steps. Would I code day-to-day
with steps this small? No. But when things get the least bit weird, I’m glad I can.
Try teensy tiny steps with an example of your own choosing. If you can make steps
too small, you can certainly make steps the right size. If you only take larger steps,
you’ll never know if smaller steps are appropriate.

Defensiveness aside, where were we? Ah, yes, we were getting rid of duplication
between the test code and the working code. Where can we get a 5? That was the
value passed to the constructor, so if we save it in the amount variable:

Dollar

Dollar(int amount) {
this.amount= amount;

}

we can use it in times():

Dollar

void times(int multiplier) {
amount= amount * 2;

}

Test Driven Development 13

Money Example

14

$5 + 10 CHF = $10 if rate is 2:
$5 * 2 = $10
Make “amount” private
Dollar side-effects?
Money rounding?
The value of the parameter “multiplier” is 2, so we can substitute the parameter for
the constant:

Dollar

void times(int multiplier) {
amount= amount * multiplier;

}

To demonstrate our thorough-going knowledge of Java syntax, we will want to use
the “*=” operator (which does, it must be said, reduce duplication):

Dollar

void times(int multiplier) {
amount *= multiplier;

}

We can now mark off the first test as done. Next we’ll take care of those strange
side effects. First, though, let’s review. We:

• Made a list of the tests we knew we needed to have working

• Told a story with a snippet of code about how we wanted to view one operation

• Ignored the details of JUnit for the moment

• Made the test compile with stubs

• Made the test run by committing horrible sins

• Gradually generalized the working code, replacing constants with variables

• Added items to our to-do list rather than addressing them all at once

1

CHAPTER 4 Degenerate Objects
The general TDD cycle is:

1. Write a test. Think about how you would like the operation in your mind to
appear in your code. You are writing a story. Invent the interface you wish you
had. Include all the elements in the story that you imagine will be necessary to
calculate the right answers.

2. Make it run. Quickly getting that bar green dominates everything else. If a
clean, simple solution is obvious, type it in. If the clean, simple solution is obvi-
ous but it will take you a minute, make a note of it and get back to the main
problem, which is getting the bar green in seconds. This shift in aesthetics is
hard for some experienced software engineers. They only know how to follow
the rules of good engineering. Quick green excuses all sins. But only for a
moment.

3. Make it right. Now that the system is behaving, put the sinful ways of the recent
past behind you. Step back onto the straight and narrow path of software righ-
teousness. Remove the duplication that you have introduced to get to quick
green.

The goal is clean code that works (thanks to Ron Jeffries for this pithy summary).
Clean code that works is out of the reach of even the best programmers some of the
time, and out of the reach of most programmers (like me) most of the time. Divide
and conquer, baby. First we’ll solve the “that works” part of the problem. Then
we’ll solve the “clean code” part. (This is the opposite of architecture-driven devel-
15

Degenerate Objects

16

$5 + 10 CHF = $10 if rate is 2:
$5 * 2 = $10
Make “amount” private
Dollar side-effects?
Money rounding?
opment, where you solve “clean code” first, then scramble around trying to inte-
grate into the design the things you learn as you solve the “that works” problem.)

We got one test working, but in the process we noticed something strange—when
we perform an operation on a Dollar, the Dollar changes. I would like to be able to
write:

public void testMultiplication() {
Dollar five= new Dollar(5);
five.times(2);
assertEquals(10, five.amount);
five.times(3);
assertEquals(15, five.amount);

}

I can’t imagine a clean way to get this test working. After the first call to times(),
five isn’t five any more, it’s really ten. If, however, we return a new object from
times(), we can multiply our original five bucks all day and never have it change.
We are changing the interface of Dollar when we make this change, so we have to
change the test. That’s okay. Our guesses about the right interface are no more
likely to be perfect than our guesses about the right implementation.

public void testMultiplication() {
Dollar five= new Dollar(5);
Dollar product= five.times(2);
assertEquals(10, product.amount);
product= five.times(3);
assertEquals(15, product.amount);

}

The new test won’t compile until we change the declaration of Dollar.times():

Dollar

Dollar times(int multiplier) {
amount *= multiplier;
return null;

}

Now the test compiles, but it doesn’t run. Progress! Making it run requires that we
return a new Dollar with the correct amount:

1

$5 + 10 CHF = $10 if rate is 2:1
$5 * 2 = $10
Make “amount” private
Dollar side-effects?
Money rounding?
Dollar

Dollar times(int multiplier) {
return new Dollar(amount * multiplier);

}

In the last chapter when we made a test work we started with a bogus implementa-
tion and gradually made it real. Here, we typed in what we thought was the right
implementation and prayed while the tests ran (short prayers, to be sure, because
running the test takes a few milliseconds.) Because we got lucky and the test ran,
we can cross off another item.

These are two of the three strategies I know for quickly getting to green:

• Fake It—return a constant and gradually replace constants with variables until
you have the real code

• Obvious Implementation—type in the real implementation

When I use TDD in practice, I commonly shift between these two modes of imple-
mentation. When everything is going smoothly and I know what to type, I put in
obvious implementation after obvious implementation (running the tests all the
time to ensure that what’s obvious to me is still obvious to the computer). As soon
as I get an unexpected red bar, I back up, shift to faking implementations, and
refactor to the right code. When my confidence is back, I go back to obvious imple-
mentations.

There is a third style of test-driving development, triangulation, which we will
demonstrate in the next chapter. However, to review, we:

• Translated a design objection (side effects) into a test case that failed because of
the objection

• Got the code to compile quickly with a stub implementation

• Made the test work by typing in what seemed like the right code

The translation of a feeling (disgust at side effects) into a test (multiply the same
Dollar twice) is a common theme of TDD. The longer I do this, the better able I am
to translate my aesthetic judgements into tests. When I can do this, my design dis-
cussions become much more interesting. First we can talk about whether the system
should work like this or like that. Once we decide on the correct behavior, we can
talk about the best way of achieving that behavior. We can speculate about truth
17

Degenerate Objects

18
and beauty all we want over beers, but while we are programming we can leave
airy-fairy discussions behind and talk cases.

$5
$5
Ma
Do
Mo
Eq
CHAPTER 5 Equality for All
 + 10 CHF = $10 if rate is 2:1
 * 2 = $10
ke “amount” private
llar side-effects?
ney rounding?
uals()
If I have an integer and I add 1 to it, I don’t expect the original integer to change, I
expect to use the new value. Objects usually don’t behave that way. If I have a Con-
tract and I add one to its coverage, the Contract’s coverage should change (yes, yes,
subject to all sorts of interesting business rules which do not concern us here.)

We can use objects as values, as we are using our Dollar now. The pattern for this is
Value Object. One of the constraints on Value Objects is that the values of the
instance variables of the object never change once they have been set in the con-
structor.

There is one huge advantage to using value objects—you don’t have to worry about
aliasing problems. Say I have one Check and I set its amount to $5, and then I set
another Check’s amount to the same $5. Some of the nastiest bugs in my career
have come when changing the first Check’s value inadvertently changed the second
Check’s value. This is aliasing.

When you have value objects, you don’t have to worry about aliasing. If I have $5,
I am guaranteed that it will always and forever be $5. If someone wants $7, they
have to make an entirely new object.

One implication of Value Object is all operations must return a new object, as we
saw in the previous chapter. Another implication is that value objects should imple-
ment equals(), since one $5 is pretty much as good as another.
19

Equality for All

20

$5 + 10 CHF = $10 if rate is 2:
$5 * 2 = $10
Make “amount” private
Dollar side-effects?
Money rounding?
equals()
hashCode()
If you use Dollars as the key to a hash table, you have to implement hashCode() if
you implement equals(). We’ll put that in the list, too, and get to it when it’s a prob-
lem.

You aren’t thinking about the implementation of equals(), are you? Good. Me nei-
ther. After snapping the back of my hand with a ruler, I’m thinking about how to
test equality. First, $5 should equal $5:

public void testEquality() {
assertTrue(new Dollar(5).equals(new Dollar(5)));

}

The bar turns obligingly red. The fake implementation is to just return true:

Dollar

public boolean equals(Object object) {
return true;

}

You and I both know that “true” is really “5 == 5” which is really “amount == 5”
which is really “amount == dollar.amount”. If I went through these steps, though, I
wouldn’t be able to demonstrate the third and most conservative implementation
strategy, triangulation.

If two receiving stations at a known distance from each other can both measure the
direction of a radio signal, there is enough information to calculate the range and
bearing of the signal (if you remember more trigonometry than I do, anyway.) This
calculation is called triangulation.

By analogy, when we Triangulate, we only generalize code when we have two or
more examples. We briefly ignore the duplication between test and model code.
When the second example demands a more general solution, then and only then do
we generalize.

So, to triangulate we need a second example. How about $5 != $6?

public void testEquality() {
assertTrue(new Dollar(5).equals(new Dollar(5)));
assertFalse(new Dollar(5).equals(new Dollar(6)));

}

Now we need to generalize equality:

1

$5 + 10 CHF = $10 if rate is 2:1
$5 * 2 = $10
Make “amount” private
Dollar side-effects?
Money rounding?
equals()
hashCode()

$5 + 10 CHF = $10 if rate is 2:1
$5 * 2 = $10
Make “amount” private
Dollar side-effects?
Money rounding?
equals()
hashCode()
Equal null
Equal object
Dollar

public boolean equals(Object object) {
Dollar dollar= (Dollar) object;
return amount == dollar.amount;

}

We could have used triangulation to drive the generalization of times(), also. If we
had $5 x 2 = $10 and $5 x 3 = $15 we would no longer have been able to return a
constant.

Triangulation feels funny to me. I only use it when I am completely unsure of how
to refactor. If I can see how to eliminate duplication between code and tests and
create the general solution, I just do it. Why would I need to write another test to
give me permission to write what I probably could have written the first time?

However, when the design thoughts just aren’t coming, triangulation gives you a
chance to think about the problem from a slightly different direction. What axes of
variability are you trying to support in your design? Make some of the them vary
and the answer may become clearer.

So, equality is done for the moment. (What about comparing with null and compar-
ing with other objects? These are commonly used operations, but not necessary at
the moment, so we’ll them to the list.)

Now that we have equality, we can directly compare Dollars to Dollars. That will
let us make amount private, as all good instance variables should be. Reviewing the
above, though, we:

• Noticed that our design pattern (Value Object) implied an operation

• Tested for that operation

• Implemented it simply

• Didn’t refactor immediately, but instead tested further

• Refactored to capture the two cases at once
21

Equality for All

22

$5
$5
Ma
Do
Mo
equ
has
Eq
Eq
CHAPTER 6 Privacy
 + 10 CHF = $10 if rate is 2:1
 * 2 = $10
ke “amount” private
llar side-effects?
ney rounding?
als()
hCode()

ual null
ual object
Now that we have defined equality, we can use it to make out tests more “speak-
ing”. Conceptually, the operation Dollar.times() should return a Dollar whose value
is the value of the receiver times the multiplier. Our test doesn’t exactly say that:

public void testMultiplication() {
Dollar five= new Dollar(5);
Dollar product= five.times(2);
assertEquals(10, product.amount);
product= five.times(3);
assertEquals(15, product.amount);

}

We can rewrite the first assertion to compare Dollars to Dollars.

public void testMultiplication() {
Dollar five= new Dollar(5);
Dollar product= five.times(2);
assertEquals(new Dollar(10), product);
product= five.times(3);
assertEquals(15, product.amount);

}

That looks better, so we rewrite the second assertion, too:
23

Privacy

24

$5 + 10 CHF = $10 if rate is 2:
$5 * 2 = $10
Make “amount” private
Dollar side-effects?
Money rounding?
equals()
hashCode()
Equal null
Equal object
public void testMultiplication() {
Dollar five= new Dollar(5);
Dollar product= five.times(2);
assertEquals(new Dollar(10), product);
product= five.times(3);
assertEquals(new Dollar(15), product);

}

Now the temporary variable “product” isn’t helping much, so we can inline it:

public void testMultiplication() {
Dollar five= new Dollar(5);
assertEquals(new Dollar(10), five.times(2));
assertEquals(new Dollar(15), five.times(3));

}

This test speaks to us more clearly, as if it were an assertion of truth, not a sequence
of operations.

With these changes to the test, Dollar is now the only class using its “amount”
instance variable, so we can make it private:

Dollar

private int amount;

And we can cross another item off the list. Notice that we have opened ourselves up
to a risk. If the test for equality fails to accurately check that equality is working,
the test for multiplication could also fail to accurately check that multiplication is
working. That is a risk you actively manage in TDD. We aren’t striving for perfec-
tion. By saying everything two ways, as both code and tests, we hope to reduce our
defects enough to move forward with confidence. From time to time our reasoning
will fail us and a defect will slip through. When that happens, we learn our lesson
about the test we should have written and move on. The rest of the time we go for-
ward boldly under our bravely flapping green bar (my bar doesn’t actually flap, but
one can dream.)

Reviewing, we:

• Used functionality just developed to improve a test

• Noticed that if two tests fail at once we’re sunk

• Proceeded in spite of the risk

1

• Used new functionality in the object under test to reduce coupling between the
tests and the code
25

Privacy

26

$5
$5
Ma
Do
Mo
equ
has
Eq
Eq
5 C
CHAPTER 7 Franc-ly Speaking
 + 10 CHF = $10 if rate is 2:1
 * 2 = $10
ke “amount” private
llar side-effects?
ney rounding?
als()
hCode()

ual null
ual object
HF * 2 = 10 CHF
How are we going to approach the first test on that list? That’s the test that’s most
interesting. It still seems to be a big leap. I’m not sure I can write a test that I can
implement in one little step. A pre-requisite seems to be having an object like Dol-
lar, but to represent Francs. If we can get Francs working like Dollars work now,
we’ll be closer to being able to write and run the mixed addition test.

We can copy and edit the Dollar test:

public void testFrancMultiplication() {
Franc five= new Franc(5);
assertEquals(new Franc(10), five.times(2));
assertEquals(new Franc(15), five.times(3));

}

(Aren’t you glad we simplified the test in the last chapter? That made our job here
easier. Isn’t it amazing how often things work out like this in books? I didn’t actu-
ally plan it that way this time, but I won’t make promises for the future.)

What short step will get us to a green bar? Copying the Dollar code and replacing
“Dollar” with “Franc”.

Stop. Hold on. I can hear the aesthetically inclined among you sneering and spit-
ting. Copy and paste reuse? The death of abstraction? The killer of clean design?
27

Franc-ly Speaking

28
If you’re upset, take a cleansing breath. In through the nose…hold it 1 2 3…out
through the mouth. There. Remember, our cycle has different phases (they go by
quickly, often in seconds, but they are phases.):

1. Write a test

2. Make it compile

3. Run it to see that it fails

4. Make it run

5. Remove duplication

The different phases have different purposes. They call for different styles of solu-
tion, different aesthetic viewpoints. The first three phases need to go by quickly, so
we get to a known state with the new functionality. You can commit any number of
sins to get there, because speed trumps design, just for that brief moment.

Now I’m worried. I’ve given you a license to abandon all the principles of good
design. Off you go to your teams—“Kent says all that design stuff doesn’t matter.”
Halt. The cycle is not complete. A four legged Aeron chair falls over. The first four
steps of the cycle won’t work without the fifth. Good design at good times. Make it
run, make it right.

There, I feel better. Now I’m sure you won’t show anyone except your partner your
code until you’ve removed the duplication. Where were we? Ah, yes. Violating all
the tenets of good design in the interest of speed (penance for our sin will occupy
the next several chapters.)

Franc

class Franc {
private int amount;

Franc(int amount) {
this.amount= amount;

}

Franc times(int multiplier) {
return new Franc(amount * multiplier);

}

public boolean equals(Object object) {
Franc franc= (Franc) object;
return amount == franc.amount;

$5 + 10 CHF = $10 if rate is 2:1
$5 * 2 = $10
Make “amount” private
Dollar side-effects?
Money rounding?
equals()
hashCode()
Equal null
Equal object
5 CHF * 2 = 10 CHF
Dollar/Franc duplication
Common equals
Common times
}
}

Because the step to running code was so short, we were even able to skip the “make
it compile” step.

Now we have duplication galore, and we have to eliminate it before writing our
next test. We’ll start by generalizing equals(). However, we can cross off an item,
even though we have to add two more. Reviewing, we:

• Couldn’t tackle a big test, so we invented a small test that represented progress

• Wrote the test by shamelessly duplicating and editing

• Even worse, made the test work by copying and editing model code wholesale

• Promised ourselves we wouldn’t go home until the duplication was gone
29

Franc-ly Speaking

30

$5
$5
Ma
Do
Mo
equ
has
Eq
Eq
5 C
Do
Co
Co
CHAPTER 8 Equality for All, Redux
 + 10 CHF = $10 if rate is 2:1
 * 2 = $10
ke “amount” private
llar side-effects?
ney rounding?
als()
hCode()

ual null
ual object
HF * 2 = 10 CHF

llar/Franc duplication
mmon equals
mmon times
There is a fabulous sequence in Wallace Stegner’s Crossing to Safety where he
describes a character’s workshop. Every item is perfectly in place, the floor is spot-
less, all is order and cleanliness. The character, however, has never made anything.
“Preparing has been his life’s work. He prepares, then he cleans up.” (This is also
the book, the ending of which sent me audibly blubbering in business class on a
trans-Atlantic 747. Read with caution.)

We have avoided this trap in the last chapter. We actually got a new test case work-
ing. However, we sinned mightily in copying and pasting tons of code so we could
do it quickly. Now it is time to clean up.

One possibility is to make one of our classes extend the other. I tried it, and it
hardly saves any code at all. Instead, we are going to find a common superclass for
the two classes (I tried this already, too, and it works out great, although it will take
a while.)

Dollar

Franc

Money

Dollar Franc
31

Equality for All, Redux

32
What if we had a Money class to capture the common equals code? We can start
small:

Money

class Money

All the tests still run (not that we could possibly have broken anything, but that’s a
good time to run the tests anyway.)

If Dollar extends Money, that can’t possibly break anything.

Dollar

class Dollar extends Money {
private int amount;

}

Can it? No, the tests still all run. Now we can move the “amount” instance variable
up to Money:

Money

class Money {
protected int amount;

}

Dollar

class Dollar extends Money {
}

The visibility has to change from private to protected so the subclass can still see it.
(If we’d wanted to go even slower we could have declared the field in Money in
one step, and then removed it from Dollar in a second step. I’m feeling bold.)

Now we can work on getting the equals() code ready to move up. First we change
the declaration of the temporary variable:

Dollar

public boolean equals(Object object) {
Money dollar= (Dollar) object;
return amount == dollar.amount;

}

All the tests still run. Now we change the cast:

Dollar

public boolean equals(Object object) {
Money dollar= (Money) object;
return amount == dollar.amount;

}

To be communicative, we should also change the name of the temporary variable:

Dollar

public boolean equals(Object object) {
Money money= (Money) object;
return amount == money.amount;

}

Now we can move it from Dollar to Money:

Money

public boolean equals(Object object) {
Money money= (Money) object;
return amount == money.amount;

}

Now we need to eliminate Franc.equals(). First we notice that the tests for equality
don’t cover comparing Francs to Francs. Our sins in copying code are catching up
with us. Before we change the code, we’ll write the tests that should have been
there in the first place.

You will often be TDDing in code that doesn’t have adequate tests (at least for the
next decade or so). When you don’t have enough tests, you are bound to come
across refactorings that aren’t supported by tests. You could make a refactoring
mistake and the tests would all still run. What do you do?

Write the tests you wish you had. If you don’t, you will eventually break something
while refactoring. Then you’ll get bad feelings about refactoring and stop doing it
so much. Then your design will deteriorate. You’ll be fired. Your dog will leave
you. You will stop paying attention to your nutrition. Your teeth will go bad. So, to
keep your teeth healthy, retroactively test before refactoring.

Fortunately, here the tests are easy to write. We just copy the tests for Dollar:

public void testEquality() {
33

Equality for All, Redux

34
assertTrue(new Dollar(5).equals(new Dollar(5)));
assertFalse(new Dollar(5).equals(new Dollar(6)));
assertTrue(new Franc(5).equals(new Franc(5)));
assertFalse(new Franc(5).equals(new Franc(6)));

}

More duplication, two lines more! We’ll atone for these sins, too.

Tests in place, we can have Franc extend Money:

Franc

class Franc extends Money {
private int amount;

}

We can delete Franc’s field “amount” in favor of the one in Money:

Franc

class Franc extends Money {
}

Franc.equals() is almost the same as Money.equals(). If we make them precisely the
same, we can delete the implementation in Franc without changing the meaning of
the program. First we change the declaration of the temporary variable:

Franc

public boolean equals(Object object) {
Money franc= (Franc) object;
return amount == franc.amount;

}

Then we change the cast:

Franc

public boolean equals(Object object) {
Money franc= (Money) object;
return amount == franc.amount;

}

Do we really have to change the name of the temporary variable to match the super-
class? I’ll leave it up to your conscience… Okay, we’ll do it:

$5 + 10 CHF = $10 if rate is 2:1
$5 * 2 = $10
Make “amount” private
Dollar side-effects?
Money rounding?
equals()
hashCode()
Equal null
Equal object
5 CHF * 2 = 10 CHF
Dollar/Franc duplication
Common equals
Common times
Compare Francs to Dollars
Franc

public boolean equals(Object object) {
Money money= (Money) object;
return amount == money.amount;

}

Now there is no difference between Franc.equals() and Money.equals(), so we
delete the redundant implementation in Franc. And run the tests. They run.

What happens when we compare Francs and Dollars? We’ll get to that in the next
chapter. Reviewing what we did here, we:

• Stepwise moved common code from one class (Dollar) to a superclass (Money)

• Made a second class (Franc) also a subclass

• Reconciled two implementations (equals()) before eliminating the redundant
one
35

Equality for All, Redux

36

$5
$5
Ma
Do
Mo
equ
has
Eq
Eq
5 C
Do
Co
Co
Co
CHAPTER 9 Apples and Oranges
 + 10 CHF = $10 if rate is 2:1
 * 2 = $10
ke “amount” private
llar side-effects?
ney rounding?
als()
hCode()

ual null
ual object
HF * 2 = 10 CHF

llar/Franc duplication
mmon equals
mmon times
mpare Francs to Dollars
The thought struck us at the end of the last chapter—what happens when we com-
pare Francs and Dollars? We dutifully turned our dreadful thought into an item on
our to-do list. But we just can’t get it out of our heads. What does happen?

public void testEquality() {
assertTrue(new Dollar(5).equals(new Dollar(5)));
assertFalse(new Dollar(5).equals(new Dollar(6)));
assertTrue(new Franc(5).equals(new Franc(5)));
assertFalse(new Franc(5).equals(new Franc(6)));
assertFalse(new Franc(5).equals(new Dollar(5)));

}

It fails. Dollars are Francs. Before you Swiss shoppers get all excited, let’s try to fix
the code. The equality code needs to check that it isn’t comparing Dollars and
Francs. We can do this right now by comparing the class of the two objects—two
Moneys are equal only if their amounts and classes are equal.

Money

public boolean equals(Object object) {
Money money = (Money) object;
return amount == money.amount

&& getClass().equals(money.getClass());
}

37

Apples and Oranges

38

$5 + 10 CHF = $10 if rate is 2:
$5 * 2 = $10
Make “amount” private
Dollar side-effects?
Money rounding?
equals()
hashCode()
Equal null
Equal object
5 CHF * 2 = 10 CHF
Dollar/Franc duplication
Common equals
Common times
Compare Francs to Dollars
Currency?
Using classes like this in model code is a bit smelly. We would like to use a criteria
that made sense in the domain of finance, not the domain of Java objects. However,
we don’t currently have anything like a currency, and this doesn’t seem like suffi-
cient reason to introduce one, so this will have to do for the moment.

Now we really need to get rid of the common times() code, so we can get to mixed
currency arithmetic. Before we do, though, we can review our grand accomplish-
ments of this chapter:

• Took an objection that was bothering us and turned it into a test

• Made the test run a reasonable, but not perfect way (getClass())

• Decided not to introduce more design until we had a better motivation

1

$5
$5
Ma
Do
Mo
equ
has
Eq
Eq
5 C
Do
Co
Co
Co
Cu
CHAPTER 10 Makin’ Objects
 + 10 CHF = $10 if rate is 2:1
 * 2 = $10
ke “amount” private
llar side-effects?
ney rounding?
als()
hCode()

ual null
ual object
HF * 2 = 10 CHF
llar/Franc duplication
mmon equals
mmon times
mpare Francs to Dollars
rrency?
The two implementations of times() are remarkably similar:

Franc

Franc times(int multiplier) {
return new Franc(amount * multiplier);

}

Dollar

Dollar times(int multiplier) {
return new Dollar(amount * multiplier);

}

We can take a step towards reconciling them by making them both return a Money:

Franc

Money times(int multiplier) {
return new Franc(amount * multiplier);

}

Dollar

Money times(int multiplier) {
return new Dollar(amount * multiplier);

}

39

Makin’ Objects

40
The next step forward is not obvious. The two subclasses of Money aren’t doing
enough work to justify their existence, so we would like to eliminate them. How-
ever, we can’t do it with one big step, because that wouldn’t make a very effective
demonstration of TDD.

Okay, we would be one step closer to eliminating the subclasses if there were fewer
references to the subclasses directly. We can introduce a Factory Method in Money
that returns a Dollar. We would use it like this:

public void testMultiplication() {
Dollar five = Money.dollar(5);
assertEquals(new Dollar(10), five.times(2));
assertEquals(new Dollar(15), five.times(3));

}

The implementation creates and returns a Dollar:

Money

static Dollar dollar(int amount) {
return new Dollar(amount);

}

But we want references to Dollars to disappear, so we need to change the declara-
tion in the test:

public void testMultiplication() {
Money five = Money.dollar(5);
assertEquals(new Dollar(10), five.times(2));
assertEquals(new Dollar(15), five.times(3));

}

Our compiler politely informs us that times() is not defined for Money. We aren’t
ready to implement it just yet, so we make Money abstract (I suppose we should
have done that to begin with, shouldn’t we?) and declare Money.times():

Money

abstract class Money
abstract Money times(int multiplier);

Now we can change the declaration of the factory method:

Money

static Money dollar(int amount) {
return new Dollar(amount);

}

The tests all run, so at least we haven’t broken anything. We can now use our fac-
tory method everywhere in the tests:

public void testMultiplication() {
Money five = Money.dollar(5);
assertEquals(Money.dollar(10), five.times(2));
assertEquals(Money.dollar(15), five.times(3));

}
public void testEquality() {

assertTrue(Money.dollar(5).equals(Money.dollar(5)));
assertFalse(Money.dollar(5).equals(Money.dollar(6)));
assertTrue(new Franc(5).equals(new Franc(5)));
assertFalse(new Franc(5).equals(new Franc(6)));
assertFalse(new Franc(5).equals(Money.dollar(5)));

}

We are now in a slightly better position than before. No client code knows that
there is a subclass called Dollar. By de-coupling the tests from the existence of the
subclasses, we have given ourselves freedom to change inheritance without affect-
ing any model code.

Before we go blindly changing the testFrancMultiplication, we notice that it isn’t
testing any logic that isn’t tested by the test for Dollar multiplication. If we delete
the test, will we lose any confidence in the code? Still a little, so we leave it there.
But it’s suspicious.

public void testEquality() {
assertTrue(Money.dollar(5).equals(Money.dollar(5)));
assertFalse(Money.dollar(5).equals(Money.dollar(6)));
assertTrue(Money.franc(5).equals(Money.franc(5)));
assertFalse(Money.franc(5).equals(Money.franc(6)));
assertFalse(Money.franc(5).equals(Money.dollar(5)));

}

public void testFrancMultiplication() {
Money five = Money.franc(5);
assertEquals(Money.franc(10), five.times(2));
41

Makin’ Objects

42

$5 + 10 CHF = $10 if rate is 2:1
$5 * 2 = $10
Make “amount” private
Dollar side-effects?
Money rounding?
equals()
hashCode()
Equal null
Equal object
5 CHF * 2 = 10 CHF
Dollar/Franc duplication
Common equals
Common times
Compare Francs to Dollars
Currency?
Delete testFrancMultiplication?
assertEquals(Money.franc(15), five.times(3));
}

The implementation is just like Money.dollar():

Money

static Money franc(int amount) {
return new Franc(amount);

}

We’ll get rid of the duplication of times() next. For now, reviewing, we:

• Took a step towards eliminating duplication by reconciling the signatures of
two variants of the same method (times())

• Moved at least a declaration of the method to the common superclass

• Decoupled test code from the existence of concrete subclasses by introducing
factory methods

• Noticed that when the subclasses disappear some tests will be redundant, but
took no action

$5
$5
Ma
Do
Mo
equ
has
Eq
Eq
5 C
Do
Co
Co
Co
Cu
De
CHAPTER 11 Times We’re Livin’ In
 + 10 CHF = $10 if rate is 2:1
 * 2 = $10
ke “amount” private
llar side-effects?
ney rounding?
als()
hCode()

ual null
ual object
HF * 2 = 10 CHF

llar/Franc duplication
mmon equals
mmon times
mpare Francs to Dollars
rrency?
lete testFrancMultiplication?
What is there on our list that might help us eliminate those pesky useless sub-
classes?

What about currency? What would happen if we introduced the notion of currency?

How do we want to implement currencies at the moment? I blew it, again. Before
the ruler comes out, I’ll rephrase. How do we want to test for currencies at the
moment? There. Knuckles saved. For the moment.

We may want to have complicated objects representing currencies, with flyweight
factories to ensure we create no more objects than we really need. However, for the
moment Strings will do:

public void testCurrency() {
assertEquals("USD", Money.dollar(1).currency());
assertEquals("CHF", Money.franc(1).currency());

}

First we declare currency() in Money:

Money

abstract String currency();
43

Times We’re Livin’ In

44
Then we implement it in both subclasses:

Franc

String currency() {
return "CHF";

}

Dollar

String currency() {
return "USD";

}

We want the same implementation to suffice for both classes. We could store the
currency in an instance variable and just return the variable. (I’ll start going a little
faster with the refactorings in the interest of time. If I go too fast, please tell me to
slow down. Oh, wait, this is a book. Perhaps I just won’t speed up much.)

Franc

private String currency;
Franc(int amount) {

this.amount = amount;
currency = "CHF";

}
String currency() {

return currency;
}

We can do the same with Dollar:

Dollar

private String currency;
Dollar(int amount) {

this.amount = amount;
currency = "USD";

}
String currency() {

return currency;
}

Now we can push up the declaration of the variable and the implementation of cur-
rency(), since they are identical:

Money

protected String currency;
String currency() {

return currency;
}

If we move the constant strings “USD” and “CHF” to the static factory methods,
the two constructors will be identical and we can create a common implementation.

First we’ll add a parameter to the constructor:

Franc

Franc(int amount, String currency) {
this.amount = amount;
this.currency = "CHF";

}

This breaks the two callers of the constructor:

Money

static Money franc(int amount) {
return new Franc(amount, null);

}

Franc

Money times(int multiplier) {
return new Franc(amount * multiplier, null);

}

Wait a minute! Why is Franc.times() calling the constructor instead of the factory
method? Do we want to make this change now, or will we wait? The dogmatic
answer is that we’ll wait, not interrupting what we’re doing. The answer in my
practice is that I will entertain a brief interruption, but only a brief one, and I will
never interrupt an interruption (Jim Coplien taught me this rule). To be realistic,
we’ll clean up times() before proceeding:

Franc

Money times(int multiplier) {
return Money.franc(amount * multiplier);

}

Now the factory method can pass “CHF”:
45

Times We’re Livin’ In

46
Money

static Money franc(int amount) {
return new Franc(amount, "CHF");

}

And finally we can assign the parameter to the instance variable:

Franc

Franc(int amount, String currency) {
this.amount = amount;
this.currency = currency;

}

I’m feeling defensive again about taking such teeny-tiny steps. Am I recommend-
ing that you actually work this way? No. I’m recommending that you be able to
work this way. What I actually did just now was I worked in larger steps and made
a stupid mistake half way through. I unwound a minute’s worth of changes, shifted
to a lower gear, and did it over with little steps. I’m feeling better now, so we’ll see
if we can make the analogous change to Dollar in one swell foop:

Money

static Money dollar(int amount) {
return new Dollar(amount, "USD");

}

Dollar

Dollar(int amount, String currency) {
this.amount = amount;
this.currency = currency;

}
Money times(int multiplier) {

return Money.dollar(amount * multiplier);
}

And it worked first time. Whew!

This is the kind of tuning you will be doing constantly with TDD. Are the teeny-
tiny steps feeling restrictive? Take bigger steps. Are you feeling a little unsure?
Take smaller steps. TDD is a steering process—a little this way, a little that way.
There is no right step size, now and forever.

The two constructors are now identical, so we can push up the implementation:

$5 + 10 CHF = $10 if rate is 2:1
$5 * 2 = $10
Make “amount” private
Dollar side-effects?
Money rounding?
equals()
hashCode()
Equal null
Equal object
5 CHF * 2 = 10 CHF
Dollar/Franc duplication
Common equals
Common times
Compare Francs to Dollars
Currency?
Delete testFrancMultiplication?
Money

Money(int amount, String currency) {
this.amount = amount;
this.currency = currency;

}

Franc

Franc(int amount, String currency) {
super(amount, currency);

}

Dollar

Dollar(int amount, String currency) {
super(amount, currency);

}

We’re almost ready to push up the implementation of times() and eliminate the sub-
classes, but first, to review, we:

• Were a little stuck on big design ideas, so we worked on something small we
noticed earlier

• Reconciled the two constructors by moving the variation to the caller (the fac-
tory method)

• Interrupted a refactoring for a little twist (using the factory method in times())

• Repeated an analogous refactoring (doing to Dollar what we just did to Franc)
in one big step

• Pushed up the identical constructors
47

Times We’re Livin’ In

48

$5
$5
Ma
Do
Mo
equ
has
Eq
Eq
5 C
Do
Co
Co
Co
Cu
De
CHAPTER 12 Interesting Times
 + 10 CHF = $10 if rate is 2:1
 * 2 = $10
ke “amount” private
llar side-effects?
ney rounding?
als()
hCode()

ual null
ual object
HF * 2 = 10 CHF

llar/Franc duplication
mmon equals
mmon times
mpare Francs to Dollars
rrency?
lete testFrancMultiplication?
When we are done with this chapter we will have a single class to represent Money.
The two implementations of times() are close, but not identical.

Franc

Money times(int multiplier) {
return Money.franc(amount * multiplier);

}

Dollar

Money times(int multiplier) {
return Money.dollar(amount * multiplier);

}

There’s not an obvious way to make them identical. Sometimes you have to go
backwards to go forwards, a little like a Rubik’s Cube. What happens if we inline
the factory methods? (I know, I know, we just called the factory method for the first
time just one chapter ago. Frustrating, isn’t it?)

Franc

Money times(int multiplier) {
return new Franc(amount * multiplier, "CHF");

}

49

Interesting Times

50
Dollar

Money times(int multiplier) {
return new Dollar(amount * multiplier, "USD");

}

In Franc, though, we know that the currency instance variable is always “CHF”, so
we can write:

Franc

Money times(int multiplier) {
return new Franc(amount * multiplier, currency);

}

That works. The same trick works in Dollar:

Dollar

Money times(int multiplier) {
return new Dollar(amount * multiplier, currency);

}

We’re almost there. Does it really matter whether we have a Franc or a Money? We
could carefully reason about this given our knowledge of the system. However, we
have clean code and we have tests that give us confidence that the clean code
works. Rather than apply minutes of suspect reasoning, we can just ask the com-
puter by making the change and running the tests. In teaching TDD I see this situa-
tion all the time—excellent programmers spending 5-10 minutes reasoning about a
question that can be answered by the computer in 15 seconds. Without the tests you
have no choice, you have to reason. With the tests you can decide whether an
experiment would answer the question faster. Sometimes you should just ask the
computer.

To run our experiment we change Franc.times() to return a Money:

Franc

Money times(int multiplier) {
return new Money(amount * multiplier, currency);

}

The compiler tells us that Money must be a concrete class:

Money

class Money
Money times(int amount) {

return null;
}

And we get a red bar. The error message says, “expected:<Money.Franc@31aebf>
but was: <Money.Money@478a43>”. Not as helpful as we would perhaps like. We
can define toString() to give us a better error message:

Money

public String toString() {
return amount + " " + currency;

}
Whoa! Code without a test? Can you do that? We could certainly have written a test
for toString() before we coded it. However:

• We are about to see the results on the screen

• Since toString() is only used for debug output, the risk of it failing is low

• We already have a red bar, and we’d prefer not to write a test when we have a
red bar

Exception noted.

Now the error message says: “expected:<10 CHF> but was:<10 CHF>”. That’s a
little better, but still confusing. We got the right data in the answer, but the class
was wrong—Money instead of Franc. The problem is in our implementation of
equals():

Money

public boolean equals(Object object) {
Money money = (Money) object;
return amount == money.amount

&& getClass().equals(money.getClass());
}

We really should be checking to see that the currencies are the same, not that the
classes are the same.

We’d prefer not to write a test when we have a red bar. However, we are about to
change real model code, and we can’t change model code without a test. The con-
51

Interesting Times

52
servative course is to back out the change that caused the red bar so we’re back to
green. Then we can change the test for equals(), fix the implementation, and re-try
the original change.

This time, we’ll be conservative (sometimes I plough ahead and write a test on a
red, but not while the children are awake.)

Franc

Money times(int multiplier) {
return new Franc(amount * multiplier, currency);

}

That gets us back to green. The situation that we had was a Franc(10, “CHF”) and a
Money(10, “CHF”) that were reported to be not equal, even though we would like
them to be equal. We can use exactly this for our test:

public void testDifferentClassEquality() {
assertTrue(new Money(10, "CHF").equals(new Franc(10, "CHF")));

}

It fails, as expected. The equals() code should compare currencies, not classes:

Money

public boolean equals(Object object) {
Money money = (Money) object;
return amount == money.amount

&& currency().equals(money.currency());
}

Now we can return a Money from Franc.times() and still pass the tests:

Franc

Money times(int multiplier) {
return new Money(amount * multiplier, currency);

}

Will the same will work for Dollar.times()?

Dollar

Money times(int multiplier) {
return new Money(amount * multiplier, currency);

}

$5 + 10 CHF = $10 if rate is 2:1
$5 * 2 = $10
Make “amount” private
Dollar side-effects?
Money rounding?
equals()
hashCode()
Equal null
Equal object
5 CHF * 2 = 10 CHF
Dollar/Franc duplication
Common equals
Common times
Compare Francs to Dollars
Currency?
Delete testFrancMultiplication?
Yes! Now the two implementations are identical, so we can push them up.

Money

Money times(int multiplier) {
return new Money(amount * multiplier, currency);

}

Multiplication in place, we are ready to eliminate the stupid subclasses. Reviewing,
we:

• Reconciled two methods (times()) by first inlining the methods they called and
then replacing constants with variables

• Wrote a toString() without a test just to help us debug

• Tried a change (returning Money instead of Franc) and let the tests tell us
whether it worked

• Backed out an experiment and wrote another test. Making the test work made
the experiment work.
53

Interesting Times

54

$5
$5
Ma
Do
Mo
equ
has
Eq
Eq
5 C
Do
Co
Co
Co
Cu
De
CHAPTER 13 The Root of all Evil
 + 10 CHF = $10 if rate is 2:1
 * 2 = $10
ke “amount” private
llar side-effects?
ney rounding?
als()
hCode()

ual null
ual object
HF * 2 = 10 CHF
llar/Franc duplication
mmon equals
mmon times
mpare Francs to Dollars
rrency?
lete testFrancMultiplication?
The two subclasses, Dollar and Franc, have only their constructors. Only a con-
structor is not enough reason to have a subclass, so we want to delete the sub-
classes.

We can replace references to the subclasses by references to the superclass without
changing the meaning of the code. First Franc:

Franc

static Money franc(int amount) {
return new Money(amount, "CHF");

}

Then Dollar:

Dollar

static Money dollar(int amount) {
return new Money(amount, "USD");

}

Now there are no references to Dollar, so we can delete it. Franc still has one refer-
ence, in the test we just wrote.

public void testDifferentClassEquality() {
55

The Root of all Evil

56

$5 + 10 CHF = $10 if rate is 2:
$5 * 2 = $10
Make “amount” private
Dollar side-effects?
Money rounding?
equals()
hashCode()
Equal null
Equal object
5 CHF * 2 = 10 CHF
Dollar/Franc duplication
Common equals
Common times
Compare Francs to Dollars
Currency?
Delete testFrancMultiplication
assertTrue(new Money(10, "CHF").equals(new Franc(10, "CHF")));
}

Is equality covered elsewhere well enough that we can delete this test? Looking at
the other equality test:

public void testEquality() {
assertTrue(Money.dollar(5).equals(Money.dollar(5)));
assertFalse(Money.dollar(5).equals(Money.dollar(6)));
assertTrue(Money.franc(5).equals(Money.franc(5)));
assertFalse(Money.franc(5).equals(Money.franc(6)));
assertFalse(Money.franc(5).equals(Money.dollar(5)));

}

it looks like we have the cases for equality well covered, too well covered, actually.
We can delete the third and fourth assertions since they duplicate the exercise of the
first and second assertions:

public void testEquality() {
assertTrue(Money.dollar(5).equals(Money.dollar(5)));
assertFalse(Money.dollar(5).equals(Money.dollar(6)));
assertFalse(Money.franc(5).equals(Money.dollar(5)));

}

The test we wrote forcing us to compare currencies instead of classes only makes
sense if there are multiple classes. Since we are trying to eliminate the Franc class,
a test to ensure that the system works if there is a Franc class is a burden, not a help.
Away testDifferentClassEquality() goes, and Franc goes with it.

Similarly, there are separate tests for dollar and franc multiplication. Looking at the
code, we can see there is no difference in the logic at the moment based on the cur-
rency (there was a difference when there were two classes). We can delete
testFrancMultiplication() without losing any confidence in the behavior of the sys-
tem.

Single class in place, we are ready to tackle addition. First, to review, we:

• Finished gutting subclasses and deleted them

• Eliminated tests that made sense with the old code structure but were redundant
with the new code structure

1

?

$5

$5
$5
CHAPTER 14 Addition, Finally
 + 10 CHF = $10 if rate is 2:1

 + 10 CHF = $10 if rate is 2:1
 + $5 = $10
It’s a new day, and our to-do list is getting a little cluttered, so we’ll copy the pend-
ing items to a fresh list. (I like physically copying to-do items to a new list. If there
are lots of little items, I tend to just take care of them rather than copy them. Little
stuff that otherwise might build up gets taken care of just because I’m lazy. Play to
your strengths.)

I’m not sure how to write the story of the whole addition, so we’ll start with a sim-
pler example—$5 + $5 = $10.

public void testSimpleAddition() {
Money sum= Money.dollar(5).plus(Money.dollar(5));
assertEquals(Money.dollar(10), sum);

}

We could fake the implementation by just returning “Money.dollar(10)”, but the
implementation seems obvious. We’ll try:

Money

Money plus(Money addend) {
return new Money(amount + addend.amount, currency);

}

57

Addition, Finally

58
(In general, I will begin speeding up the implementations to save trees and keep
your interest. Where the design isn’t obvious I will still fake the implementation
and refactor. I hope you will see through this how TDD gives you control over the
size of steps.)

Having said that I was going to go much faster, I will immediately go much slower,
not in getting the tests working, but in writing the test itself. There are times and
tests that call for careful thought. How are we going to represent multi-currency
arithmetic? This is one of those times for careful thought.

The most difficult design constraint is that we would like most of the code in the
system to be unaware that it is (potentially) dealing with multiple currencies. One
possible strategy is to immediately convert all money values into a reference cur-
rency (I’ll let you guess which reference currency American imperialist pig pro-
grammers generally choose). However, this doesn’t allow exchange rates to vary
easily.

Instead we would like a solution that lets us conveniently represent multiple
exchange rates, and still allows most arithmetic-like expressions to look like, well,
arithmetic.

Objects to the rescue. When the object you have doesn’t behave like you want,
make another object with the same external protocol (an Imposter), but a different
implementation.

This probably sounds a bit like magic. How do you know to think of creating an
imposter here? I won’t kid you—there is no formula for flashes of design insight.
Ward came up with the “trick” a decade ago and I haven’t seen it independently
duplicated yet, so it must be a pretty tricky trick. TDD can’t guarantee that you will
have flashes of insight at the right moment. However, confidence-giving tests and
carefully factored code give you preparation for insight, and preparation for apply-
ing that insight when it comes.

The solution is to create an object that acts like a Money, but represents the sum of
two Moneys. I’ve tried several different metaphors to explain this idea. One is to
treat the sum like a Wallet—you can have several different notes of different
denominations and currencies in the same wallet.

Another metaphor is “expressions”, as in “(2 + 3) * 5”, or in our case “($2 + 3
CHF) * 5”. A Money is the atomic form of an expression. Operations result in
Expressions, one of which will be a Sum. Once the operation (like adding up the

value of a portfolio) is complete, the resulting Expression can be reduced back a
single currency given a set of exchange rates.

Applying this metaphor to our test, we know what we end up with:

public void testSimpleAddition() {
…
assertEquals(Money.dollar(10), reduced);

}

The reduced Expression is created by applying exchange rates to an Expression.
What in the real world applies exchange rates? A bank. We would like to be able to
write:

public void testSimpleAddition() {
…
Money reduced= bank.reduce(sum, "USD");
assertEquals(Money.dollar(10), reduced);

}

(It’s a little weird to be mixing the “bank” metaphor and the “expression” meta-
phor. We’ll get the whole story told first, and then we’ll see what we can do about
literary value.)

We have made an important design decision here. We could just as easily have
written “…reduce= sum.reduce(“USD”, bank)”. Why make the Bank responsible?
One answer is “that’s the first thing that popped into my head,” but that’s not very
informative. Why did it pop into my head that reduction should be the responsibil-
ity of the bank and not the expression? Here’s what I’m aware of at the moment:

• Expressions seem to be at the heart of what we are doing. I try to keep the
objects at the heart as ignorant of the rest of the world as possible, so they stay
flexible as long as possible (and remain easy to test, and reuse, and understand.)

• I can imagine there will be many operations involving Expressions. If we add
every operation to Expression, Expression will grow without limit.

That doesn’t seem like enough reasons to tip the scales permanently, but it is
enough for me to start in this direction. I’m also perfectly willing to move responsi-
bility for reduction to Expression if it turns out Bank’s don’t need to be involved.

The Bank in our simple example doesn’t really need to do anything. As long as we
have an object we’re okay:
59

Addition, Finally

60
public void testSimpleAddition() {
…
Bank bank= new Bank();
Money reduced= bank.reduce(sum, "USD");
assertEquals(Money.dollar(10), reduced);

}

The sum of two Moneys should be an Expression:

public void testSimpleAddition() {
…
Expression sum= five.plus(five);
Bank bank= new Bank();
Money reduced= bank.reduce(sum, "USD");
assertEquals(Money.dollar(10), reduced);

}

At least we know for sure how to get five dollars:

public void testSimpleAddition() {
Money five= Money.dollar(5);
Expression sum= five.plus(five);
Bank bank= new Bank();
Money reduced= bank.reduce(sum, "USD");
assertEquals(Money.dollar(10), reduced);

}

How do we get this to compile? We need an interface Expression (we could have a
class, but an interface is even lighter weight):

Expression

interface Expression

Money.plus() needs to return an Expression:

Money

Expression plus(Money addend) {
return new Money(amount + addend.amount, currency);

}

Which means that Money has to implement Expression (which is easy, since there
are no operations yet):

Money

class Money implements Expression

We need an empty Bank class:

Bank

class Bank

Which stubs out reduce():

Bank

Money reduce(Expression source, String to) {
return null;

}

Now it compiles, and fails miserably. Hooray! Progress! We can easily fake the
implementation, though:

Bank

Money reduce(Expression source, String to) {
return Money.dollar(10);

}

We’re back to a green bar, and ready to refactor. First, reviewing, we:

• Reduced a big test to a smaller test that represented progress ($5 + 10 CHF to $5
+ $5)

• Thought carefully about the possible metaphors for our computation

• Re-wrote our previous test based on our new metaphor

• Got the test to compile quickly

• Made it run

• Looked forward with a bit of trepidation to the refactoring necessary to make
the implementation real
61

Addition, Finally

62

$5
$5
CHAPTER 15 Make It
 + 10 CHF = $10 if rate is 2:1
 + $5 = $10
We can’t mark our test for $5 + $5 done until we’ve removed all the duplication.
We don’t have code duplication, but we do have data duplication. The $10 in the
fake implementation:

Bank

Money reduce(Expression source, String to) {
return Money.dollar(10);

}

is really the same as the “$5 + $5” in the test:

public void testSimpleAddition() {
Money five= Money.dollar(5);
Expression sum= five.plus(five);
Bank bank= new Bank();
Money reduced= bank.reduce(sum, "USD");
assertEquals(Money.dollar(10), reduced);

}

Before when we’ve had a fake implementation, it’s been obvious how to work
backwards to the real implementation. It’s just been a matter of replacing constants
with variables. This time, though, it’s not obvious to me how to work backwards.
So, even though it feels a little speculative, we’ll work forwards.
63

Make It

64

$5 + 10 CHF = $10 if rate is 2:
$5 + $5 = $10
Return Money from $5 + $5
First, Money.plus() needs to return a real Expression, a Sum, not just a Money (per-
haps later we’ll optimize the special case of adding two identical currencies, but
that’s later.)

The sum of two Moneys should be a Sum:

public void testPlusReturnsSum() {
Money five= Money.dollar(5);
Expression result= five.plus(five);
Sum sum= (Sum) result;
assertEquals(five, sum.augend);
assertEquals(five, sum.addend);

}

(Did you know that the first argument to addition is called the “augend”? I didn’t
until I was writing this. Geek joy.)

The test above is not one I would expect to live a long time. It is deeply concerned
with the implementation of our operation, not its externally visible behavior. How-
ever, if we make it work, we expect we’ve moved one step closer to our goal.

To get it to compile, all we need is a Sum class with two fields, augend and addend:

Sum

class Sum {
Money augend;
Money addend;

}

This gives us a ClassCastException, because Money.plus() is returning a Money,
not a Sum:

Money

Expression plus(Money addend) {
return new Sum(this, addend);

}

Sum needs a constructor:

Sum

Sum(Money augend, Money addend) {
}

1

And Sum needs to be a kind of Expression:

Sum

class Sum implements Expression

Now the system compiles again, but the test is still failing, this time because the
Sum constructor is not setting the fields (we could fake the implementation by ini-
tializing the fields, but I said I’d start going faster):

Sum

Sum(Money augend, Money addend) {
this.augend= augend;
this.addend= addend;

}

Now Bank.reduce() is being passed a Sum. If the currencies in the Sum are all the
same, and the target currency is also the same, the result should be a Money whose
amount is the sum of the amounts:

public void testReduceSum() {
Expression sum= new Sum(Money.dollar(3), Money.dollar(4));
Bank bank= new Bank();
Money result= bank.reduce(sum, "USD");
assertEquals(Money.dollar(7), result);

}

I carefully chose parameters that would break the existing test. When we reduce a
Sum, the result (under these simplified circumstances) should be a Money whose
amount is the sum of the amounts of the two Moneys and whose currency is the
currency to which we are reducing.

Bank

Money reduce(Expression source, String to) {
Sum sum= (Sum) source;
int amount= sum.augend.amount + sum.addend.amount;
return new Money(amount, to);

}

This is immediately ugly on two counts:

• The cast. This code should work with any Expression.

• The public fields, and two levels of references at that
65

Make It

66

$5 + 10 CHF = $10 if rate is 2:1
$5 + $5 = $10
Return Money from $5 + $5
Bank.reduce(Money)
Easy enough to fix. First, we can move the body of the method to Sum and get rid
of some of the visible fields. We are “sure” we will need the Bank as a parameter in
the future, but this is pure, simple refactoring, so we leave it out (actually, just now
I put it in because I “knew” I would need it—shame, shame on me.)

Bank

Money reduce(Expression source, String to) {
Sum sum= (Sum) source;
return sum.reduce(to);

}

Sum

public Money reduce(String to) {
int amount= augend.amount + addend.amount;
return new Money(amount, to);

}

(Which brings up the point of how we are going to implement, er… test,
Bank.reduce() when the argument is a Money.)

Let’s write that test, since the bar is green and there is nothing else obvious to do
with the code above:

public void testReduceMoney() {
Bank bank= new Bank();
Money result= bank.reduce(Money.dollar(1), "USD");
assertEquals(Money.dollar(1), result);

}

Bank

Money reduce(Expression source, String to) {
if (source instanceof Money) return (Money) source;
Sum sum= (Sum) source;
return sum.reduce(to);

}

Ugly, ugly, ugly. However, we now have a green bar, and refactoring is possible.
Any time you are checking classes explicitly, you should be using polymorphism
instead. Since Sum implements reduce(String), if Money implemented it, too, we
could then add it to the Expression interface.

Bank

Money reduce(Expression source, String to) {

if (source instanceof Money)
return (Money) source.reduce(to);

Sum sum= (Sum) source;
return sum.reduce(to);

}

Money

public Money reduce(String to) {
return this;

}

If we add reduce(String) to the Expression interface:

Expression

Money reduce(String to);

We can eliminate all those ugly casts and class checks:

Bank

Money reduce(Expression source, String to) {
return source.reduce(to);

}

I’m not entirely happy with the name of the method being the same in Expression
and in Bank, but having different parameter types. I’ve never found a satisfactory
general solution to this problem in Java. In languages with keyword parameters,
communicating the difference between Bank.reduce(Expression, String) and
Expression.reduce(String) is well supported by the language syntax. With posi-
tional parameters, it’s not so easy to make the code speak for you about how the
two are different.

Next we’ll actually exchange one currency for another. First, reviewing, we:

• Didn’t mark a test as done because the duplication had not been eliminated

• Worked forwards instead of backwards to realize the implementation

• Wrote a test to force the creation of an object we expected to need later (Sum)

• Started implementing faster (the Sum constructor)

• Implemented code with casts in one place, then moved the code where it
belonged once the test were running

• Introduced polymorphism to eliminate explicit class checking
67

Make It

68

$5 + 10 CHF = $10 if rate is 2:
$5 + $5 = $10
Return Money from $5 + $5
Bank.reduce(Money)
Reduce Money with conversion
1

$5 + 10 CHF = $10 if rate is 2:1
$5 + $5 = $10
Return Money from $5 + $5
Bank.reduce(Money)
Reduce Money with conversion

$5 + 10 CHF = $10 if rate is 2:1
$5 + $5 = $10
Return Money from $5 + $5
Bank.reduce(Money)
Reduce Money with conversion
Reduce(Bank, String)
69

Make It

70

$5
$5
Re
Ba
Re
Re
CHAPTER 16 Change
 + 10 CHF = $10 if rate is 2:1
 + $5 = $10
turn Money from $5 + $5
nk.reduce(Money)
duce Money with conversion
duce(Bank, String)
Change is worth embracing (especially if you have a book out with “embrace
change” in the title). Here, though, we are thinking about a much simpler form of
change—we have 2 francs and we want a dollar. That sounds like a test case
already:

public void testReduceMoneyDifferentCurrency() {
Bank bank= new Bank();
bank.addRate("CHF", "USD", 2);
Money result= bank.reduce(Money.franc(2), "USD");
assertEquals(Money.dollar(1), result);

}

When I go from francs to dollars, I divide by two (we’re still studiously ignoring all
those nasty numerical problems.) We can make the bar green in one piece of ugli-
ness:

Money

public Money reduce(String to) {
int rate = (currency.equals("CHF") && to.equals("USD"))

? 2
: 1;

return new Money(amount / rate, to);
}

71

Change

72
Now, suddenly, Money knows about exchange rates. Yuck. The Bank should be the
only place we care about exchange rates. We’ll have to pass the Bank as a parame-
ter to Expression.reduce() (see, we knew we would need it, and we were right. In
the words of the grandfather in The Princess Bride, “You’re very clever…”) First
the caller:

Bank

Money reduce(Expression source, String to) {
return source.reduce(this, to);

}

Then the implementors:

Expression

Money reduce(Bank bank, String to);

Sum

public Money reduce(Bank bank, String to) {
int amount= augend.amount + addend.amount;
return new Money(amount, to);

}

Money

public Money reduce(Bank bank, String to) {
int rate = (currency.equals("CHF") && to.equals("USD"))

? 2
: 1;

return new Money(amount / rate, to);
}

The methods have to be public because methods in interfaces have to be public (for
some excellent reason, I’m sure.)

Now we can calculate the rate in the Bank:

Bank

int rate(String from, String to) {
return (from.equals("CHF") && to.equals("USD"))

? 2
: 1;

}

And ask the bank for the right rate:

Money

public Money reduce(Bank bank, String to) {
int rate = bank.rate(currency, to);
return new Money(amount / rate, to);

}

That pesky “2” still appears in both the test and the code. To get rid of it, we need to
keep a table of rates in the Bank and look up a rate when we need it. We could use
a Hashtable mapping pairs of currencies to rates. Can we use a two element array
containing the two currencies as the key? Does Array.equals() check to see if the
elements are equal?

public void testArrayEquals() {
assertEquals(new Object[] {"abc"}, new Object[] {"abc"});

}

Nope. The test fails, so we have to create a real object for the key:

Pair

private class Pair {
private String from;
private String to;

Pair(String from, String to) {
this.from= from;
this.to= to;

}
}

Because we are using Pairs as keys, we have to implement equals() and hash-
Code(). I’m not going to write tests for these, because we are writing this code in
the context of a refactoring. If we get to the payoff of the refactoring and all the
tests run, we expect the code to have been exercised. If I was programming with
someone who didn’t see exactly where we were going with this, or if the logic
became the least bit complex, I would begin writing separate tests.

Pair

public boolean equals(Object object) {
Pair pair= (Pair) object;
return from.equals(pair.from) && to.equals(pair.to);

}

73

Change

74
public int hashCode() {
return 0;

}

“0” is a terrible hash value, but it has the advantage that it’s easy to implement and
it will get us running quickly. Currency lookup will look like linear search. Later,
when we get lots of currencies, we can do a more thorough job with real usage data.

We need somewhere to store the rates:

Bank

private Hashtable rates= new Hashtable();

We need to set the rate when told:

Bank

void addRate(String from, String to, int rate) {
rates.put(new Pair(from, to), new Integer(rate));

}

And then we can look up the rate when asked:

Bank

int rate(String from, String to) {
Integer rate= (Integer) rates.get(new Pair(from, to));
return rate.intValue();

}

Wait a minute!? We got a red bar. What happened? A little snooping around tells us
that if we ask for the rate from USD to USD, we expect the value to be 1. Since this
was a surprise, let’s write a test to communicate what we discovered:

public void testIdentityRate() {
assertEquals(1, new Bank().rate("USD", "USD"));

}

Now we have three errors, but we expect them all to be fixed with one change:

Bank

int rate(String from, String to) {
if (from.equals(to)) return 1;

Integer rate= (Integer) rates.get(new Pair(from, to));
return rate.intValue();

}

Green bar!

Next we’ll implement our last big test, $5 + 10 CHF. Several significant techniques
have slipped into this chapter:

• Added a parameter, in seconds, that we expected we would need

• Factored out the data duplication between code and tests

• Wrote a test (testArrayEquals) to check an assumption about the operation of
Java

• Introduced a private helper class without distinct tests of its own

• Made a mistake in a refactoring and chose to forge ahead, writing another test to
isolate the problem
75

Change

76

$5 + 10 CHF = $10 if rate is 2:
$5 + $5 = $10
Return Money from $5 + $5
Bank.reduce(Money)
Reduce Money with conversion
Reduce(Bank, String)
1

$5
$5
Re
Ba
Re
Re
CHAPTER 17 Mixed Currencies
 + 10 CHF = $10 if rate is 2:1
 + $5 = $10
turn Money from $5 + $5
nk.reduce(Money)
duce Money with conversion
duce(Bank, String)
Now we are finally ready to add the test that started it all, $5 + 10 CHF:

public void testMixedAddition() {
Expression fiveBucks= Money.dollar(5);
Expression tenFrancs= Money.franc(10);
Bank bank= new Bank();
bank.addRate("CHF", "USD", 2);
Money result= bank.reduce(fiveBucks.plus(tenFrancs), "USD");
assertEquals(Money.dollar(10), result);

}

This is what we’d like to write. Unfortunately, there are a host of compile errors.
When we were generalizing from Money to Expression, we left a lot of loose ends
laying around. I was worried about them, but I didn’t want to disturb you. It’s dis-
turbing time, now.

We won’t be able to get the test above to compile quickly. We will make the first
change that will ripple to the next and the next. We have two paths forward. We can
make it work quickly by writing a more specific test and then generalizing, or we
can trust our compiler not to let us make mistakes. I’m with you—let’s go slow (in
practice I would probably just fix the rippling changes one at a time).

public void testMixedAddition() {
Money fiveBucks= Money.dollar(5);
77

Mixed Currencies

78
Money tenFrancs= Money.franc(10);
Bank bank= new Bank();
bank.addRate("CHF", "USD", 2);
Money result= bank.reduce(fiveBucks.plus(tenFrancs), "USD");
assertEquals(Money.dollar(10), result);

}

The test doesn’t work. We get 15 USD instead of 10 USD. It’s as if Sum.reduce()
isn’t reducing the arguments. It isn’t:

Sum

public Money reduce(Bank bank, String to) {
int amount= augend.amount + addend.amount;
return new Money(amount, to);

}

If we reduce both of the arguments, the test should pass:

Sum

public Money reduce(Bank bank, String to) {
int amount= augend.reduce(bank, to).amount +

addend.reduce(bank, to).amount;
return new Money(amount, to);

}

And it does. Now we can begin pecking away at Moneys that should be Expres-
sions. To avoid the ripple effect, we’ll start at the edges and work our way back to
the test case. For example, the augend and addend can now be Expressions:

Sum

Expression augend;
Expression addend;

The arguments to the Sum constructor can also be Expressions:

Sum

Sum(Expression augend, Expression addend) {
this.augend= augend;
this.addend= addend;

}

(Sum is starting to remind me of Composite, but not so much that I want to general-
ize. The moment we want a Sum with other than two parameters, though, I’m ready
to transform it.) So much for Sum. How about Money?

The argument to plus() can be an Expression:

Money

Expression plus(Expression addend) {
return new Sum(this, addend);

}

Times() can return an Expression:

Money

Expression times(int multiplier) {
return new Money(amount * multiplier, currency);

}

This suggests that Expression should include the operations plus() and times().
That’s all for Money. We can now change the argument to plus() in our test case:

public void testMixedAddition() {
Money fiveBucks= Money.dollar(5);
Expression tenFrancs= Money.franc(10);
Bank bank= new Bank();
bank.addRate("CHF", "USD", 2);
Money result= bank.reduce(fiveBucks.plus(tenFrancs), "USD");
assertEquals(Money.dollar(10), result);

}

When we change fiveBucks to an Expression, we have to make several changes.
Fortunately we have the compiler’s to-do list to keep us focused. First we make the
change:

public void testMixedAddition() {
Expression fiveBucks= Money.dollar(5);
Expression tenFrancs= Money.franc(10);
Bank bank= new Bank();
bank.addRate("CHF", "USD", 2);
Money result= bank.reduce(fiveBucks.plus(tenFrancs), "USD");
assertEquals(Money.dollar(10), result);

}

79

Mixed Currencies

80

$5 + 10 CHF = $10 if rate is 2:
$5 + $5 = $10
Return Money from $5 + $5
Bank.reduce(Money)
Reduce Money with conversion
Reduce(Bank, String)
Sum.plus
Expression.times
We are politely told that plus() is not defined for Expressions. We define it:

Expression

Expression plus(Expression addend);

And then we have to add it to Money and Sum. Money? Yes, it has to be public in
Money:

Money

public Expression plus(Expression addend) {
return new Sum(this, addend);

}

We’ll just stub out the implementation in Sum, and add it to our list:

Sum

public Expression plus(Expression addend) {
return null;

}

Now that the program compiles, the tests all run.

We are ready to finish generalizing Money to Expression, but first we’ll review.
We:

• Wrote the test we wanted, then backed off to make it achievable in one step

• Generalized (used a more abstract declaration) from the leaves back to the root
(the test case)

• Followed the compiler when we made a change (Expression fiveBucks) which
caused changes to ripple (added plus() to Expression, etc.)

1

$5
$5
Re
Ba
Re
Re
Su
Exp
CHAPTER 18 Abstraction, Finally
 + 10 CHF = $10 if rate is 2:1
 + $5 = $10
turn Money from $5 + $5
nk.reduce(Money)
duce Money with conversion
duce(Bank, String)
m.plus
ression.times
We need to implement Sum.plus() to finish Expression.plus, and then we need
Expression.times(), and then we’re finished with the whole example. Here’s the test
for Sum.plus():

public void testSumPlusMoney() {
Expression fiveBucks= Money.dollar(5);
Expression tenFrancs= Money.franc(10);
Bank bank= new Bank();
bank.addRate("CHF", "USD", 2);
Expression sum= new Sum(fiveBucks, tenFrancs).plus(fiveBucks);
Money result= bank.reduce(sum, "USD");
assertEquals(Money.dollar(15), result);

}

We could have created a Sum by adding fiveBucks and tenFrancs, but the form
above, where we explicitly create the Sum, communicates more directly. You are
writing these tests not just to make your experience of programming more fun and
rewarding, but also as a Rosetta Stone for future generations to appreciate your
genius. Think, oh think, of your readers.

The test, in this case, is longer than the code. The code is the same as the code in
Money (do I hear an abstract class in the distance?):
81

Abstraction, Finally

82

$5 + 10 CHF = $10 if rate is 2:
$5 + $5 = $10
Return Money from $5 + $5
Bank.reduce(Money)
Reduce Money with conversion
Reduce(Bank, String)
Sum.plus
Expression.times

$5 + 10 CHF = $10 if rate is 2:
$5 + $5 = $10
Return Money from $5 + $5
Bank.reduce(Money)
Reduce Money with conversion
Reduce(Bank, String)
Sum.plus
Expression.times
Sum

public Expression plus(Expression addend) {
return new Sum(this, addend);

}

You will likely end up with about the same number of lines of test code as model
code when TDDing. For TDD to make economic sense, either you will have to be
able to write twice as many lines per day as before, or write half as many lines for
the same functionality. You’ll have to measure and see what effect TDD has on
your own practice. Be sure to factor debugging, integrating, and explaining time
into your metrics, though.

If we can make Sum.times() work, then declaring Expression.times() will be one
simple step. The test is:

public void testSumTimes() {
Expression fiveBucks= Money.dollar(5);
Expression tenFrancs= Money.franc(10);
Bank bank= new Bank();
bank.addRate("CHF", "USD", 2);
Expression sum= new Sum(fiveBucks, tenFrancs).times(2);
Money result= bank.reduce(sum, "USD");
assertEquals(Money.dollar(20), result);

}

Again, the test is longer than the code (you JUnit geeks will know how to fix that—
the rest of you will have to read Fixture):

Sum

Expression times(int multiplier) {
return new Sum(augend.times(multiplier),

addend.times(multiplier));
}

Since we abstracted augend and addend to Expressions in the last chapter, we now
have to declare times() in Expression before the code will compile:

Expression

Expression times(int multiplier);

Which forces us to raise the visibility of Money.times() and Sum.times():

1

1

$5 + 10 CHF = $10 if rate is 2:1
$5 + $5 = $10
Return Money from $5 + $5
Bank.reduce(Money)
Reduce Money with conversion
Reduce(Bank, String)
Sum.plus
Expression.times
Sum

public Expression times(int multiplier) {
return new Sum(augend.times(multiplier),

addend.times(multiplier));
}

Money

public Expression times(int multiplier) {
return new Money(amount * multiplier, currency);

}

And it works.

The only loose end to tie up is to experiment with returning a Money when we add
$5 + $5. The test would be:

public void testPlusSameCurrencyReturnsMoney() {
Expression sum= Money.dollar(1).plus(Money.dollar(1));
assertTrue(sum instanceof Money);

}

This test is a little ugly, because it is testing the guts of the implementation, not the
externally visible behavior of the objects. However, it will drive us to make the
changes we need to make, and this is only an experiment, after all. Here is the code
we would have to modify to make it work:

Money

public Expression plus(Expression addend) {
return new Sum(this, addend);

}

There is no obvious, clean way (not to me, anyway, I’m sure you could think of
something) to check the currency of the argument if and only if it is a Money. The
experiment fails, we delete the test (which we didn’t like much anyway), and away
we go.

Reviewing, we:

• Wrote a test with future readers in mind

• Suggested an experiment comparing TDD with your current programming style

• Once again had changes of declarations ripple through the system, and once
again followed the compiler’s advice to fix them
83

Abstraction, Finally

84

$5 + 10 CHF = $10 if rate is 2:
$5 + $5 = $10
Return Money from $5 + $5
Bank.reduce(Money)
Reduce Money with conversion
Reduce(Bank, String)
Sum.plus
Expression.times
• Tried a brief experiment, then discarded it when it didn’t work out

1

CHAPTER 19 Money Retrospective
Let’s take a look back at the Money example, both the process we used and the
results. We will look at:

• What Next?

• Metaphor—the dramatic effect metaphor has on the structure of the design

• JUnit Usage—when we ran tests and how we used JUnit

• Code Metrics—a numerical abstract of the resulting code

• Process—we say red/green/refactor, but how much work goes into each step?

• Test Quality—how do TDD tests stack up by conventional test metrics?

What Next?

Is the code finished? No. There is that nasty duplication between Sum.plus() and
Money.plus(). If we made Expression a class instead of an interface (not the usual
direction, as classes more often become interfaces), we would have a natural home
for the common code.

I don’t believe in “finished”. TDD can be used as a way to strive for perfection, but
that isn’t its most effective use. If you have a big system, the parts that you touch all
the time should be absolutely rock solid, so you can make daily changes confi-
dently. As you drift out to the periphery of the system, to parts that don’t change
85

Money Retrospective

86
often, the tests can be spottier and the design uglier without interfering with your
confidence.

When I’ve done all of the obvious tasks, I like running a code critic, like SmallLint
for Smalltalk. Many of the suggestions that come up I already know about, or I dis-
agree with. Automated critics don’t forget, though, so if I don’t delete an obsolete
implementation I don’t have to stress. The critic will point it out.

Another “what next?” question is, “What additional tests do I need?” Sometimes
you think of a test that “shouldn’t” work, and it does. Then you need to find out
why. Sometimes a test that shouldn’t work really doesn’t, and you can record it as a
known limitation or as work to be done later.

Finally, when the list is empty is a good time to review the design. Do the words
and concepts play together? Is there duplication that is difficult to eliminate given
the current design (lingering duplication is a symptom of latent design.)

Metaphor

The biggest surprise for me in coding the Money example is how different it came
out this time. I have programmed Money in production at least three times that I
can think of. I have used it as an example in print another half dozen times. I have
programmed it live on stage (relax, it’s not as exciting as it sounds…) another fif-
teen times. I coded another three or four times preparing for writing (I ripped out
Section I and rewrote it based on early reviews.) Then, while I was writing this, I
thought of using Expression as the metaphor and the design went in a completely
different direction than it has gone before.

I really didn’t expect the metaphor to be so powerful. A metaphor should just be a
source of names, shouldn’t it? Apparently not.

The metaphor Ward used for “several monies together with potentially different
currencies” was a vector, like a mathematic vector where the coefficients were cur-

rencies instead of x2. I used MoneySum for a while, then MoneyBag (which is nice
and physical), and finally Wallet (which is commoner in most folks’ experience).
All of these metaphors imply that the collection of Money’s is flat. For example, “2
USD + 5 CHF + 3 USD” would result in “5 USD + 5 CHF”. Two values with the
same currency would be merged.

1

1

2
2

3

3

4
4

5

Occurrences
The Expression metaphor freed me from a bunch of nasty issues about merging
duplicated currencies. The code came out cleaner and clearer than I’ve ever seen it
before. I’m concerned about the performance of Expressions, but I’m happy to wait
until I see some usage statistics before I start optimizing.

What if I got to rewrite everything I ever wrote 20 times? Would I keep finding
insight and surprise every time? Is there some way to be more mindful as I program
so I can squeeze all the insight out of the first three times? The first time?

JUnit Usage

I had JUnit keep a log while I was coding the Money example. I pressed the Run
button precisely 125 times. Because I was writing at the same time as I was pro-
gramming, the interval between runs isn’t representative, but during the times I was
just programming I ran the tests about once a minute. Only once in that whole time
was I surprised by either success or failure, and that was a refactoring done in haste.

Here is a histogram of the time interval between test runs. The large number of
large intervals is most likely because of the time I spent writing:

0

5
0

5

0
5

0

5

0
5

0

0 1 < 5 < 10 >= 10

Minutes Between Runs
87

Money Retrospective

88
Code Statistics

Here are some statistics on the code:

1. Because we haven’t implemented the whole API, we can’t evaluate the absolute
number of functions, or the number of functions per class, or lines per class.
However, the ratios are instructive. There are roughly as many lines and func-
tions in the test and functional code.

2. The number of lines of test code can be reduced by extracting common fixtures.
The rough correspondence between lines of model code and lines of test code
will remain, however.

3. Cyclomatic complexity is a measure of conventional flow complexity. Test
complexity is 1 because there are no branches or loops in test code. Functional
code complexity is low because of the heavy use of polymorphism as a substi-
tute for explicit control flow.

4. This includes the function header and trailing brace.

5. Lines/function in the tests is inflated because we have not factored out common
fixture-building code, as explained in the section on JUnit.

Process

The TDD cycle is:

• Write a test

• Make it compile, run it to see it fail

• Make it run

• Remove duplication

Functional Test

Classes 5 1

Functions (1) 22 15

Lines (2) 91 89

Cyclomatic complexity (3) 1.04 1

Lines/function 4.1 (4) 5.9 (5)

Assuming that writing a test is a single step, how many changes does it take to com-
pile, run, and refactor? (By change, I mean changing a method or class definition.)

I expect that if we gathered data for a large project, the number of changes to com-
pile and run would remain fairly small (they could be even smaller if the program-
ming environment understood what the tests were trying to tell it—creating stubs
automatically, for instance). However, (here’s at least a master’s thesis) the number
of changes per refactoring should follow a “fat tail” or leptokurtotic profile, which
is like a bell curve but with more extreme changes than predicted by a standard bell
curve. Many measurements in nature follow this profile, like price changes in the

stock market.1

1. Fractals and Scaling in Finance, Benoit Mandelbrot, editor, Springer-
Verlag, 1997, ISBN: 0387983635

Number of changes per refactoring

0

2

4

6

8

10

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Number of Changes

rrences
89

Money Retrospective

90
Test Quality

The tests that are a natural by-product of TDD are certainly useful enough to keep
running as long as the system is running. Don’t expect them to replace the many
other types of testing:

• Performance

• Stress

• Usability

However, if the defect density of test-driven code is low enough, the role of profes-
sional testing will inevitably change from “adult supervision” to something more
closely resembling an amplifier for the communication between those who gener-
ally have a feeling for what the system should do and those who will make it do. As
a stand-in for a long and interesting conversation about the future of professional
testing, here are a couple of widely shared measurements of the tests written above.

Statement coverage is certainly not a sufficient measure of test quality, but it is a
starting place. TDD followed religiously should result in 100% statement coverage.
JProbe (www.sitraka.com/software/jprobe) reports only one line in one method not
covered by the test cases, Money.toString(), which we added explicitly as a debug-
ging aid, not real model code.

Another way of evaluating test quality is defect insertion. The idea is simple—
change the meaning of a line of code and a test should break. You can do this man-
ually, or with a tool like Jester (jester.sourceforge.net). Jester reports only one line
it is able to change without breaking, Pair.hashCode(). We faked the implementa-
tion to just return 0. Returning a different constant doesn’t actually change the
meaning of the program (one fake number is as good as another), so it isn’t really a
defect that has been inserted.

Phlip made a point about test coverage that bears repeating here. A gross measure
of coverage is the number of tests testing different aspects of a program divided by
the number of aspects that need testing (the complexity of the logic). One way to
improve coverage is to write more tests, hence the dramatic difference in the num-
ber of tests a TDDer would write for code and the number of tests a professional
tester would write (page ??? gives details of an example where I wrote 6 tests and a
tester wrote 65 for the same problem). However, another way to improve coverage
is to take a fixed set of tests and simplify the logic of the program. The refactoring
step often has this effect—conditionals replaced by messages, or by nothing at all.
In his words, “… instead of increasing the test coverage to walk all permutations of

input (more properly an efficiently reduced sample of all possible permutations),
we just leave the same tests covering various permutations of code as it shrinks.”

One Last Review

The three items that come up time and again as surprises when teaching TDD are:

• The three approaches to making a test work cleanly—fake it, triangulate, and
just typing in the right solution to begin with

• Removing duplication between test and code as a way to drive the design

• The ability to control the gap between tests to increase traction when the road
gets slippery and cruise faster when conditions are clear
91

Money Retrospective

92

CHAPTER 20 Section II: xUnit
How, oh how, to talk about the implementation of a tool for test-driven develop-
ment? Test-driven, naturally.

The xUnit architecture comes out very smoothly in Python, so I’ll switch to Python
for this section. Don’t worry, I’ll give a little commentary on Python, for those of
you who haven’t seen it before. When you’re done you’ll have an introduction to
Python, you’ll be able to write your own testing framework, and you’ll have seen a
trickier example of TDD—three for the price of one.

Writing a testing tool test-first using itself as the tool, may seem a bit like perform-
ing brain surgery on yourself (“Don’t touch those motor centers—oh, too bad,
game over”). It will get weird from time to time. However, the logic of the testing
framework is more complicated than the wimpy money example above. You can
read this chapter as a step towards test-driven development of “real” software. You
can read this chapter as a computer-sciency exercise in self-referential program-
ming.

First, we need to be able to create a TestCase and run a test method. For example:
TestCase(“testMethod”).run(). We have a bootstrap problem. We are writing test
cases to test a framework that we will be using to write the test cases. Since we
don’t have a framework yet, we will have to verify the operation of the first tiny
step by hand. Fortunately, we are well rested and relaxed and unlikely to make mis-
93

Section II: xUnit

94

Invoke test method
Invoke setUp first
Invoke tearDown afterwards
Invoke tearDown even if the tes

method fails
Run multiple tests
Report collected results
takes, which is why we will go in teensy tiny steps, verifying everything six ways
from Sunday. Here is the test list I can think of for a testing framework.

We are still working test-first, of course. For our first proto-test, we need a little
program that will print out true if a test method gets called, and false otherwise. If
we have a test case that sets a flag inside the test method, we can print the flag after
we’re done and make sure it’s correct. Once we have verified it manually, we can
automate the process.

Here’s the strategy for our bootstrap test—we will create a TestCase that contains a
flag. Before the test method is run, the flag should be false. The test method will set
the flag. After the test method is run, the flag should be true. We’ll call the
TestCase class “WasRun”, because it’s a test case that reports whether a method
was run. The flag (perhaps confusingly, but it’s such a good name) will also be
called “wasRun”, so we can eventually write “assert test.wasRun” (assert is a built-
in Python facility.)

Python executes statements as it reads a file, so we can start with invoking the test
method manually:

test= WasRun("testMethod")
print test.wasRun
test.testMethod()
print test.wasRun

We expect this to print “None” (None in Python is like null or nil, and stands for
false, along with 0 and a few other objects) before the method was run, and “1”
afterwards. It doesn’t, because we haven’t defined the class WasRun yet (test-first,
test-first).

WasRun

class WasRun:
pass

(The keyword “pass” is used when there is no implementation of a class or
method.) Now we are told we need an attribute “wasRun”. We need to create the
attribute when we create the instance is created (the constructor is called “__init__”
for convenience). In it, we set the wasRun flag false.

WasRun

class WasRun:
def __init__(self, name):

t

self.wasRun= None

Running the file faithfully prints out “None”, then tells us we need to define the
method “testMethod” (wouldn’t it be great if your IDE noticed this, provided you
with a stub, and opened up an editor on it? Nah, too useful… cf)

WasRun

def testMethod(self):
pass

Now when we execute the file, we see “None” and “None”. We want to see “None”
and “1”. We can get it by setting the flag in testMethod():

WasRun

def testMethod(self):
self.wasRun= 1

Now we get the right answer (the green bar, hooray!). Now we have a bunch of
refactoring to do, but as long as we maintain the green bar, we know we have made
progress.

Next we need to use our real interface, run(), instead of calling the test method
directly. The test changes to:

test= WasRun("testMethod")
print test.wasRun
test.run()
print test.wasRun

The implementation we can hardwire at the moment to:

WasRun

def run(self):
self.testMethod()

And our test is back to printing the right values again. Lots of refactoring has this
feel—separating two parts so you can work on them separately. If they go back
together when you are finished, fine, if not, you can leave them separate. In this
case, we expect to create a superclass TestCase, eventually, but first we have to dif-
ferentiate the parts of our one example. There is probably some clever analogy with
mitosis in here, but I don’t know enough cellular biology to explain it.
95

Section II: xUnit

96
The next step is to dynamically invoke the testMethod. If the name attribute of the
instance of WasRun is the string “testMethod”, then we can replace the direct call
to “self.testMethod()” with “exec “self.” + self.name + “()”” (the dynamic invoca-
tion of methods is called Pluggable Selector, and should be used sparingly, and
only if there are no reasonable alternatives).

WasRun

class WasRun:
def __init__(self, name):
self.wasRun= None
self.name= name
def run(self):
exec "self." + self.name + "()"

Here is another general pattern of refactoring—take code that works in one instance
and generalize it to work in many by replacing constants with variables. Here the
constant was hardwired code, not a data value, but the principle is the same. TDD
makes this work well by giving you running concrete examples from which to gen-
eralize, instead of having to generalize purely with reasoning.

Now our little WasRun class is doing two distinct jobs—one is keeping track of
whether a method was invoked or not, the other is dynamically invoking the
method. Time for a little of that mitosis action. First we create an empty TestCase
superclass, and make WasRun a subclass:

TestCase

class TestCase:
pass

WasRun

class WasRun(TestCase): …

Now we can move the “name” attribute up to the superclass:

TestCase

def __init__(self, name):
self.name= name

WasRun

def __init__(self, name):
self.wasRun= None
TestCase.__init__(self, name)

Finally, the run() method only uses attributes from the superclass, so it probably
belongs in the superclass (I’m always looking to put the operations near the data.)

TestCase

def __init__(self, name):
self.name= name

def run(self):
exec "self." + self.name + "()"

(Between every one of these steps I run the tests to make sure I’m getting the same
answer.)

We’re getting tired of looking to see that “None” and “1” are printed every time.
Using the mechanism we just built, we can now write:

TestCaseTest

class TestCaseTest(TestCase):
def testRunning(self):

test= WasRun("testMethod")
assert(not test.wasRun)
test.run()
assert(test.wasRun)

TestCaseTest("testRunning").run()

The body of the test is just the print statements turned into assertions, so you could
just see what we have done as a complicated form of Extract Method.

I’ll let you in on a little secret. I look at the size of the steps in the development
above and it looks ridiculous. On the other hand, I tried it with bigger steps, proba-
bly six hours in all (I had to spend a lot of time looking up Python stuff), starting
from scratch twice, and both times I thought I had the code working when I didn’t.
This is about the worst possible case for TDD, because we are trying to get over the
bootstrap step.

It is not necessary to work in such tiny steps as these. Once you’ve mastered TDD,
you will be able to work in much bigger leaps of functionality between test cases.
However, to master TDD you need to be able to work in such tiny steps when they
are called for.

Next we will tackle calling setUp() before running the test. Reviewing first, we:
97

Section II: xUnit

98

Invoke test method
Invoke setUp first
Invoke tearDown afterwards
Invoke tearDown even if the tes

method fails
Run multiple tests
Report collected results
• After a couple of hubris-fueled false starts, figured out how to begin with a tiny
little step

• Implemented functionality, first by hardwiring it, then making it more general
by replacing constants with variables

• Used Pluggable Adaptor, which we promise not to use again for four months,
minimum, because it makes code hard to statically analyze

• Bootstrapped our testing framework, all in tiny steps

t

CHAPTER 21 Set the Table
Invoke test method
Invoke setUp first
Invoke tearDown afterwards
Invoke tearDown even if the tes

method fails
Run multiple tests
Report collected results
When you begin writing tests, you will discover a common pattern (Bill Wake
coined the phrase 3A for this):

1. Arrange—create some objects

2. Act—stimulate them

3. Assert—check the results

The arrange step is often the same test-to-test, while the stimulation and checking
steps are unique. I have a 7 and 9. If I add them, I expect 16. If I subtract them, I
expect –2, if I multiply them, I expect 63. The stimulation and expected results are
unique, the 7 and the 9 don’t change.

If this pattern repeats at different scales (and it does), then we’re faced with the
question of how often do we want to create new objects to test. Looking back at our
initial set of constraints, two constraints come into conflict:

• Performance—we would like our tests to run as quickly as possible, so if we use
similar objects in several tests we would like to create them once for all tests

• Isolation—we would like the success or failure of one test to be irrelevant to
other tests, and if one test changes the objects, following tests are likely to
change their results

t
99

Set the Table

100
Test coupling has an obvious nasty effect, where breaking one test causes the next
ten to fail even though the code is correct. Test coupling can have a subtle really
nasty effect, where the order of tests matters. If I run A before B, they both work,
but if I run B before A, then A fails. Or even nastier, the code exercised by B is
wrong, but because A ran first, the test passes.

Test coupling—don’t go there. Let’s assume for the moment we can make object
creation fast enough. In this case, we would like to create the objects for a test every
time the test runs. We’ve already seen a disguised form of this in WasRun, where
we wanted to have a flag set to false before we ran the test. Taking steps towards
this, first we need a test:

TestCaseTest

def testSetUp(self):
test= WasRun("testMethod")
test.run()
assert(test.wasSetUp)

Running this, (by adding the last line “TestCaseTest("testSetUp").run()” to our file)
Python politely informs us that there is no “wasSetUp” attribute. Of course not. We
haven’t set it. This method should do it.

WasRun

def setUp(self):
self.wasSetUp= 1

It would if we were calling it. Calling setUp is the job of the TestCase, so we turn
there:

TestCase

def setUp(self):
pass

def run(self):
self.setUp()
exec "self." + self.name + "()"

That’s two steps to get a test case running, which is too many in such ticklish cir-
cumstances. We’ll see if it will work. Yes, it does pass. However, if you want to
learn something, try to figure out how we could have gotten the test to pass by
changing no more than one method at a time.

We can immediately use our new facility to shorten our tests. First, we can simplify
WasRun by setting the wasRun flag in setUp:

WasRun

def setUp(self):
self.wasRun= None
self.wasSetUp= 1

We have to simplify testRunning not to check the flag before running the test. Are
we willing to give up this much confidence in our code? Only if testSetUp is in
place. This is a common pattern—one test can be simple if and only if another test
is in place and running correctly.

TestCaseTest

def testRunning(self):
test= WasRun("testMethod")
test.run()
assert(test.wasRun)

We can also simplify the tests themselves. In both cases we create an instance of
WasRun, exactly that fixture we were talking about earlier. We can create the Was-
Run in setUp, and use it in the test methods. Each test method is run in a clean
instance of TestCaseTest, so there is no way the two tests can be coupled (assuming
the objects don’t interact in some incredibly ugly way, like setting global variables,
but we wouldn’t do that, not with all those other readers watching.)

TestCaseTest

def setUp(self):
self.test= WasRun("testMethod")

def testRunning(self):
self.test.run()
assert(self.test.wasRun)

def testSetUp(self):
self.test.run()
assert(self.test.wasSetUp)

Next we’ll run tearDown() after the test method. Reviewing this chapter, we:

• Decided simplicity of test writing was more important than performance for the
moment

• Tested and implemented setUp()
101

Set the Table

102

Invoke test method
Invoke setUp first
Invoke tearDown afterwards
Invoke tearDown even if the tes

method fails
Run multiple tests
Report collected results
• Used setUp() to simplify the example test case

• Used setUp() to simplify the test cases checking the example test case (I told
you this would get like self-brain-surgery)

t

Inv
Inv
Inv
Inv

m
Ru
Re

Inv
Inv
Inv
Inv

m
Ru
Re
Log
CHAPTER 22 Cleaning Up After
oke test method
oke setUp first
oke tearDown afterwards
oke tearDown even if the test

ethod fails
n multiple tests
port collected results

oke test method
oke setUp first
oke tearDown afterwards
oke tearDown even if the test

ethod fails
n multiple tests
port collected results
 string in WasRun
Tests will sometimes need to allocate external resources in setUp(). If we want the
tests to remain independent, a test that allocates external resources should release
them before it is done, perhaps in a tearDown() method.

The simple minded way to write the test for deallocation is to introduce yet another
flag. All those flags are starting to bug me, and they are missing an important aspect
of the methods—setUp() is called before the test method is run, and tearDown() is
called afterwards. I’m going to change the testing strategy to keep a little log of
what methods are called. By always appending to the log, we will preserve the
order in which the methods are called.

WasRun

def setUp(self):
self.wasRun= None
self.wasSetUp= 1
self.log= "setUp "

Now we can change testSetUp() to look at the log instead of the flag:

TestCaseTest

def testSetUp(self):
self.test.run()
assert("setUp " == self.test.log)
103

Cleaning Up After

104
Now we can delete the wasSetUp flag. We can record the running of the test
method, too:

WasRun

def testMethod(self):
self.wasRun= 1
self.log= self.log + "testMethod "

This breaks testSetUp, because the actual log contains “setUp testMethod ”. We
change the expected value:

TestCaseTest

def testSetUp(self):
self.test.run()
assert("setUp testMethod " == self.test.log)

Now this test is doing the work of both tests, so we can delete testRunning and
rename testSetUp:

TestCaseTest

def setUp(self):
self.test= WasRun("testMethod")

def testTemplateMethod(self):
self.test.run()
assert("setUp testMethod " == self.test.log)

Unfortunately, we are only using the instance if WasRun in one place, so we have
to undo our clever setUp hack:

TestCaseTest

def testTemplateMethod(self):
test= WasRun("testMethod")
test.run()
assert("setUp testMethod " == test.log)

(Doing a refactoring based on a couple of early uses, then having to undo it soon
after is fairly common. Some folks wait until they have three or four uses before
refactoring because they don’t like undoing work. I prefer to spend my thinking
cycles on design, so I just reflexively do the refactorings without worrying about
whether I will have to undo them immediately afterward.)

Invoke test method
Invoke setUp first
Invoke tearDown afterwards
Invoke tearDown even if the test

method fails
Run multiple tests
Report collected results
Log string in WasRun
Now we are ready to implement tearDown(). Got you! We are ready to test for tear-
Down:

TestCaseTest

def testTemplateMethod(self):
test= WasRun("testMethod")
test.run()
assert("setUp testMethod tearDown " == test.log)

This fails. Making it work is simple:

TestCase

def run(self, result):
result.testStarted()
self.setUp()
exec "self." + self.name + "()"
self.tearDown()

WasRun

def setUp(self):
self.log= "setUp "

def testMethod(self):
self.log= self.log + "testMethod "

def tearDown(self):
self.log= self.log + "tearDown "

Surprisingly, we get an error, not in WasRun, but in the TestCaseTest. We don’t
have a no-op implementation of tearDown() in TestCase:

TestCase

def tearDown(self):
pass

This time we got value out of using the same testing framework we are developing.
Yippee…

No refactoring necessary. The Obvious Implementation, after that one glitch,
worked and was clean.

Next we’ll go on to report the results of running a test explicitly, instead of letting
Python’s native error handling and reporting system tell us when there is a problem
with an assertion. Reviewing, in this chapter we:
105

Cleaning Up After

106

Invoke test method
Invoke setUp first
Invoke tearDown afterwards
Invoke tearDown even if the tes

method fails
Run multiple tests
Report collected results
Log string in WasRun
• Restructured the testing strategy from flags to a log

• Tested and implemented tearDown() using the new log

• Found a problem and, daringly, fixed it instead of backing up (was that a good
idea?)

t

Inv
Inv
Inv
Inv

m
Ru
Re
Log
CHAPTER 23 Counting
oke test method
oke setUp first
oke tearDown afterwards
oke tearDown even if the test

ethod fails
n multiple tests
port collected results
 string in WasRun
I was going to implement making sure tearDown() is called regardless of excep-
tions during the test method. However, we have to catch exceptions to make the test
work (I know, I just tried it, and backed it out.) If we make a mistake implementing
this, we won’t be able to see the mistake because the exceptions won’t be reported.
In general, the order of implementing the tests is important. When I pick the next
test to implement, I find a test that will teach me something but which I have confi-
dence I can make work. If I get that test working but get stuck on the next one, I
consider backing up two steps. It would be great if your programming environment
helped me with this, checkpointing the code every time all the tests ran.

What we would like to see is the results of running any number of tests—“5 run, 2
failed, TestCaseTest.testFooBar—ZeroDivideException, MoneyTest.testNega-
tion—AssertionError”. Then if the tests stop getting called, or results stop getting
reported, at least we have a chance of catching the error. Having the framework
automatically report all the test cases it knows nothing about seems a bit far-
fetched, at least for the first test case.

We’ll have TestCase.run() return a TestResult object that records the results of run-
ning the test (singular for the moment, but we’ll get to that.)

TestCaseTest

def testResult(self):
test= WasRun("testMethod")
107

Counting

108
result= test.run()
assert("1 run, 0 failed" == result.summary())

We’ll start with a fake implementation:

TestResult

class TestResult:
def summary(self):

return "1 run, 0 failed"

and return a TestResult as the result of TestCase.run()

TestCase

def run(self):
self.setUp()
exec "self." + self.name + "()"
self.tearDown()
return TestResult()

Now that the test runs, we can realize (as in “make real”) the implementation of
summary() a little at a time. First, we can make the number of tests run a symbol
constant:

TestResult

def __init__(self):
self.runCount= 1

def summary(self):
return "%d run, 0 failed" % self.runCount

(The % operator is Python’s sprintf.) However, runCount shouldn’t be a constant, it
should be computed by counting the number of tests run. We can initialize it to 0,
then increment it every time a test is run.

TestResult

def __init__(self):
self.runCount= 0

def testStarted(self):
self.runCount= self.runCount + 1

def summary(self):
return "%d run, 0 failed" % self.runCount

We have to actually call this groovy new method:

TestCase

def run(self):
result= TestResult()
result.testStarted()
self.setUp()
exec "self." + self.name + "()"
self.tearDown()
return result

We could turn the constant string “0” for the number of failed tests into a variable
in the same way as we realized runCount. However, the tests don’t demand it. So,
we write another test.

TestCaseTest

def testFailedResult(self):
test= WasRun("testBrokenMethod")
result= test.run()
assert("1 run, 1 failed", result.summary)

Where:

WasRun

def testBrokenMethod(self):
raise Exception

The first thing we notice is that we aren’t catching the exception thrown by Was-
Run.testBrokenMethod. We would like to catch the exception and make a note in
the result that the test failed. We’ll put this test on the shelf for the moment.

Reviewing, we:

• Wrote a fake implementation, and gradually began making it real by replacing
constants with variables

• Wrote another test

• When that test failed, we wrote yet another test, at a smaller scale, to support
making the failing test work
109

Counting

110

Invoke test method
Invoke setUp first
Invoke tearDown afterwards
Invoke tearDown even if the tes

method fails
Run multiple tests
Report collected results
Log string in WasRun
Report failed tests
t

Inv
Inv
Inv
Inv

m
Ru
Re
Log
Re
CHAPTER 24 Dealing with Failure
oke test method
oke setUp first
oke tearDown afterwards
oke tearDown even if the test

ethod fails
n multiple tests
port collected results
 string in WasRun

port failed tests
We’ll write a smaller grained test to be sure that if we note a failed test, we print out
the right results.

TestCaseTest

def testFailedResultFormatting(self):
result= TestResult()
result.testStarted()
result.testFailed()
assert("1 run, 1 failed" == result.summary())

“testStarted()” and “testFailed()” are the messages we expect to send to the result
when a test starts and when a test fails, respectively. If we can get the summary to
print correctly when these messages are sent in this order, then our programming
problem is reduced to how to get these messages sent. Once they are sent, we
expect the whole thing to work.

The implementation is to keep a count of failures:

TestResult

def __init__(self):
self.runCount= 0
self.errorCount= 0

def testFailed(self):
111

Dealing with Failure

112
self.errorCount= self.errorCount + 1

With the count correct (which I suppose we could have tested for, if we were taking
teensy, weensy, tiny steps, but I won’t bother, the coffee has kicked in now), we
can print correctly:

TestResult

def summary(self):
return "%d run, %d failed" % (self.runCount, self.failureCount)

Now we expect if we call testFailed() correctly, we will get the expected answer.
When do we call it? When we catch an exception in the test method:

TestCase

def run(self):
result= TestResult()
result.testStarted()
self.setUp()
try:

exec "self." + self.name + "()"
except:

result.testFailed()
self.tearDown()
return result

There is a subtlety hidden inside this method. The way it is written, if a disaster
happens during setUp(), the exception won’t be caught. That can’t be what we
mean—we want our tests to run independently of each other. However, we need
another test before we can change the code (I taught Bethany, my oldest daughter,
TDD as her first programming style around age 12. She thinks you can’t type in
code unless there is a broken test. The rest of us have to muddle through reminding
ourselves to write the tests.) That next test and its implementation are left as an
exercise for the reader (sore fingers, again.)

Next we will work on getting several tests to run together. Reviewing this chapter,
we:

• Made our small scale test work

• Reintroduced the larger scale test

• Made the larger test work quickly using the mechanism demonstrated by the
smaller test

Invoke test method
Invoke setUp first
Invoke tearDown afterwards
Invoke tearDown even if the test

method fails
Run multiple tests
Report collected results
Log string in WasRun
Report failed tests
Catch and report setUp errors
• Noticed a potential problem and noted it on the to do list instead of addressing it
immediately
113

Dealing with Failure

114

Inv
Inv
Inv
Inv

m
Ru
Re
Log
Re
Ca
CHAPTER 25 How Suite It Is
oke test method
oke setUp first
oke tearDown afterwards
oke tearDown even if the test

ethod fails
n multiple tests
port collected results
 string in WasRun

port failed tests
tch and report setUp errors
We can’t leave xUnit without visiting TestSuite. The end of our file, where we
invoke all the tests, is looking pretty ratty:

print TestCaseTest("testTemplateMethod").run().summary()
print TestCaseTest("testResult").run().summary()
print TestCaseTest("testFailedResultFormatting").run().summary()
print TestCaseTest("testFailedResult").run().summary()

Duplication is always a bad thing, unless you look at it as motivation to find the
missing design element. What we would like here is the ability to compose tests
and run them together (working hard to make them run in isolation doesn’t do us
much good if we only ever run one at a time). Another good reason to implement
TestSuite is that it gives us a pure example of Composite—we want to be able to
treat single tests and groups of tests exactly the same.

We would like to be able to create a TestSuite, add a few tests to it, then get collec-
tive results from running it.

TestCaseTest

def testSuite(self):
suite= TestSuite()
suite.add(WasRun("testMethod"))
suite.add(WasRun("testBrokenMethod"))
115

How Suite It Is

116
result= suite.run()
assert("2 run, 1 failed" == result.summary())

Implementing the add() method just adds tests to a list:

TestSuite

class TestSuite:
def __init__(self):

self.tests= []
def add(self, test):

self.tests.append(test)

(Python note: “[]” creates an empty collection.) The run method is a bit of a prob-
lem. We want a single TestResult to be used by all the tests that run. Therefore, we
should write:

TestSuite

def run(self):
result= TestResult()
for test in tests:

test.run(result)
return result

(Python note: “for test in tests” iterates through the elements of “tests”, assigning
each one to “test” and evaluating the following code.) However, one of the main
constraints on Composite is that the collection has to respond to the same messages
as the individual items. If we add a parameter to TestCase.run(), we have to add the
same parameter to TestSuite.run(). I can think of three alternatives:

• Use Python’s default parameter mechanism. Unfortunately, the default value is
evaluated at compile time, not run time, and we don’t want to be reusing the
same TestResult

• Split the method into two parts, one which allocates the TestResult and the other
which runs the test given a TestResult. I can’t think of good names for the two
parts of the method, which suggests that this isn’t a good strategy

• Allocate the TestResults in the caller

We will allocate the TestResults in the callers. This pattern is called Collecting
Parameter.

TestCaseTest

def testSuite(self):
suite= TestSuite()
suite.add(WasRun("testMethod"))
suite.add(WasRun("testBrokenMethod"))
result= TestResult()
suite.run(result)
assert("2 run, 1 failed" == result.summary())

This solution has the advantage that run() now has no explicit return:

TestSuite

def run(self, result):
for test in tests:

test.run(result)

TestCase

def run(self, result):
result.testStarted()
self.setUp()
try:

exec "self." + self.name + "()"
except:

result.testFailed()
self.tearDown()

Now we can clean up the invocation of the tests at the end of the file:

suite= TestSuite()
suite.add(TestCaseTest("testTemplateMethod"))
suite.add(TestCaseTest("testResult"))
suite.add(TestCaseTest("testFailedResultFormatting"))
suite.add(TestCaseTest("testFailedResult"))
suite.add(TestCaseTest("testSuite"))
result= TestResult()
suite.run(result)
print result.summary()

There is substantial duplication here, which we could eliminate if we had a way of
constructing a suite automatically given a test class.
117

How Suite It Is

118

Invoke test method
Invoke setUp first
Invoke tearDown afterwards
Invoke tearDown even if the tes

method fails
Run multiple tests
Report collected results
Log string in WasRun
Report failed tests
Catch and report setUp errors
Create TestSuite from a

TestCase class
However, first we have to fix the 4 failing tests (they use the old no-argument run
interface):

TestCaseTest

def testTemplateMethod(self):
test= WasRun("testMethod")
result= TestResult()
test.run(result)
assert("setUp testMethod tearDown " == test.log)

def testResult(self):
test= WasRun("testMethod")
result= TestResult()
test.run(result)
assert("1 run, 0 failed" == result.summary())

def testFailedResult(self):
test= WasRun("testBrokenMethod")
result= TestResult()
test.run(result)
assert("1 run, 1 failed" == result.summary())

def testFailedResultFormatting(self):
result= TestResult()
result.testStarted()
result.testFailed()
assert("1 run, 1 failed" == result.summary())

Notice that each test allocates a TestResult, exactly the problem solved by setUp().
We can simplify the tests (at the cost of making them a little more difficult to read),
by creating the TestResult in setUp():

TestCaseTest

def setUp(self):
self.result= TestResult()

def testTemplateMethod(self):
test= WasRun("testMethod")
test.run(self.result)
assert("setUp testMethod tearDown " == test.log)

def testResult(self):
test= WasRun("testMethod")
test.run(self.result)
assert("1 run, 0 failed" == self.result.summary())

def testFailedResult(self):

t

Invoke test method
Invoke setUp first
Invoke tearDown afterwards
Invoke tearDown even if the test

method fails
Run multiple tests
Report collected results
Log string in WasRun
Report failed tests
Catch and report setUp errors
Create TestSuite from a

TestCase class
test= WasRun("testBrokenMethod")
test.run(self.result)
assert("1 run, 1 failed" == self.result.summary())

def testFailedResultFormatting(self):
self.result.testStarted()
self.result.testFailed()
assert("1 run, 1 failed" == self.result.summary())

def testSuite(self):
suite= TestSuite()
suite.add(WasRun("testMethod"))
suite.add(WasRun("testBrokenMethod"))
suite.run(self.result)
assert("2 run, 1 failed" == self.result.summary())

All those extra “self.”s are a bit ugly, but that’s Python. If it was an object language,
the self would be assumed and references to global variables would require qualifi-
cation. Instead, it is a scripting language with object support (excellent object sup-
port, to be sure) added, so global reference is implied and referring to self is
explicit.

I will leave the rest of these items to you and your new-found TDD skills.

Reviewing, in this chapter we:

• Wrote a test for a TestSuite

• Wrote part of the implementation, but without making the test work. This was a
violation of “da roolz”. If you spotted it at the time, take two test cases out of
petty cash. I’m sure there is a simple fake implementation that would have made
the test case work so we could refactor under the green bar, but I can’t think
what it is at the moment.

• Changed the interface of the run method so the item and the composite of items
could work identically, then finally got the test working

• Factored out the common set-up code
119

How Suite It Is

120

CHAPTER 26 xUnit Retrospective
If the time comes for you to implement your own testing framework, the above
sequence can serve as your guide. The details of the implementation are not nearly
as important as the test cases. If you can support a set of test cases like the ones
above, you can write tests that are isolated and composeable, and you will be on
your way to being able to develop test-first.

xUnit has been ported to more than 30 languages at this writing. Your language is
likely to already have an implementation. There are a couple of reasons for imple-
menting it yourself even if there is a version already available:

• Mastery—The spirit of xUnit is simplicity. Martin Fowler said, “Never in the
annals of software engineering was so much owed by so many to so few lines of
code.” Some of the implementations have gotten a little complicated for my
taste. Rolling your own will give you a tool over which you have a feeling of
mastery.

• Exploration—When I’m faced with a new programming language, I implement
xUnit. By the time I have the first 8-10 tests running, I have explored many of
the facilities I will be using in daily programming

When you begin using xUnit, you will discover a big difference between assertions
that fail and other kinds of errors while running tests—assertion failures consis-
tently take much longer to debug. Because of this, most implementations of xUnit
121

xUnit Retrospective

122
distinguish between failures—meaning assertion failures—and errors. The GUIs
present them differently, often with the errors on top.

JUnit declares a simple Test interface that is implemented by both TestCase and
TestSuite. If you want your tests to be runnable by JUnit tools, you can implement
the Test interface, too.

public interface Test {
public abstract int countTestCases();
public abstract void run(TestResult result);

}

Languages with optimistic (dynamic) typing don’t even have to declare their alle-
giance to an interface, they can just implement the operations. If you write a test
scripting language, Script can implement countTestCases() to return 1 and run to
notify the TestResult on failure and you can run your scripts along with the ordi-
nary TestCases.

CHAPTER 27 Section III: Patterns
What follows are the “greatest hits” patterns for TDD. Some of the patterns are
TDD tricks, some are design patterns, and some are refactorings.

If you are familiar with one of these topics, the patterns here will show you how the
topics play with TDD. Otherwise, there is enough material here to get you through
the book examples, and whet your appetite for the comprehensive treatments found
elsewhere.
123

Section III: Patterns

124

CHAPTER 28 Test-Driven
Development Patterns
There are some basic strategic question we need to answer before we can talk about
the details of how to test:

• What do we mean by testing?

• When do we test?

• How do we choose what logic to test?

• How do we choose what data to test?

Test n.

How do you test your software? Write an automated test.

Test is a verb meaning to evaluate. No programmers release even the tiniest change
without testing, except the very confident and the very sloppy. I’ll assume that if
you’ve gotten this far, your’re neither. While you may test your changes, testing
changes is not the same as having tests. Test is also a noun, a procedure leading to
acceptance or rejection. Why does “test” the noun, a procedure that runs automati-
cally, feel different than “test” the verb, such as poking a few buttons and looking at
answers on the screen?

(What follows in an influence diagram, a la Gerry Weinberg’s Quality Software
Management. An arrow between nodes means an increase in the first node implies
125

Test-Driven Development Patterns

126
an increase in the second. An arrow with a circle means an increase in the first node
implies a decrease in the second.)

What happens when the stress level rises?

Figure 1 has Stress negatively connected to Testing negatively connected to Errors
positively connected to Stress.

This is a positive feedback loop. The more stress you feel, the less testing you will
do. The less testing you do, the more errors you will make. The more errors you
make, the more stress you feel. Rinse and repeat.

How do you get out of such a loop? Either introduce a new element, replace one of
the elements, or change the arrows. In this case we’ll replace “testing” with “auto-
mated testing”.

Figure 2 has Stress positively connected to Automated Testing negatively con-
nected to Errors and Stress, and Errors positively connected to Stress.

“Did I just break something else with that change?” With automated tests, when I
start to feel stress I run the tests. Tests are the Programmer’s Stone, transmuting
fear into boredom. “No, the tests are all still green.” The more stress I feel, the more
I run the tests. Running the tests immediately gives me a good feeling, and reduces
the number of errors I make, which further reduces the stress I feel.

“We don’t have time to run the tests. Just release it!” The second picture isn’t guar-
anteed. If the stress level rises high enough, it breaks down. However, with the
automated tests you have a chance to choose your level of fear.

Should you run the test after you write it, even though you know it’s going to fail?
No, don’t bother. For example, I was working with a couple of very sharp younger
programmers on implementing in-memory transactions (a very cool technique
every programming language should have). How were we going to implement roll-
back if we started a transaction, changed a few variables, then let the transaction be
garbage collected? Simple enough to test, youngsters. Stand back and watch the
master at work. Here is the test. Now how are we going to implement this?

Two hours later, hours marred with frustration because a mistake implementing
such low-level features generally crashes the development environment, we rolled
back to where we had started. Wrote the test. Ran it on a whim. It passed. Duh…
The whole point of the transaction mechanism was that variables weren’t really

changed until the transaction was committed. Okay, I suppose you could go ahead
and run that new test if you want to.

Isolated Test

How should the running of tests affect each other? Not at all.

When I was a young programmer, long long ago when we had to dig our own bits
out of the snow and carry heavy buckets of them bare-footed back to our cubicles
leaving bloody little footprints for the wolves to follow… Sorry, just reminiscing.
My first experience of automated tests was having a set of long-running, overnight,
GUI-based tests (you know, record the keystrokes and mouse events and play them
back) for a debugger I was working on (hi Jothy, hi John!). Every morning when I
came in there would be a neat stack of paper on my chair describing last night’s test
runs (hi Al!). On good days there would be a single sheet summarizing that nothing
broke. On bad days there would be many many sheets, one for each broken test. I
began to dread days when I saw a pile of paper on my chair.

I took two lessons from this experience. First, make the tests so fast to run that I can
run them myself, and run them often. That way I can catch errors before anyone
else sees them, and I don’t have to dread coming in in the morning. Second, I
noticed after a while that a huge stack of paper didn’t usually mean a huge list of
problems. More often it meant that one test had broken early, leaving the system in
an unpredictable state for the next test.

We tried to get around this problem by starting and stopping the system between
each test, but it took too long, which taught me another lesson about seeking tests at
a smaller scale than the whole application. But the main lesson I took was that tests
should be able to ignore each other completely. If I had one test broken, I wanted
one problem. If I had two tests broken, I wanted two problems.

One convenient implication of isolated tests is that the tests are order independent.
If I want to grab a subset of tests and run them, I can do so without worrying that a
test will break now because a prerequisite test is gone.

Performance is the usual reason cited for having tests share data. A second implica-
tion of isolated tests is that you have to work, sometimes work hard, to break your
problem into little orthogonal dimensions, so setting up the environment for each
test is easy and quick. Isolating tests encourages you to compose solutions out of
many highly cohesive, loosely coupled objects. I always heard this was a good idea,
127

Test-Driven Development Patterns

128
and I was happy when I achieved it, but I never knew exactly how to regularly
achieve high cohesion and loose coupling until I started writing isolated tests.

Test List

What should you test? Before you begin, write a list of all the tests you know you
will have to write.

The first part of our strategy for dealing with programming stress is to never take a
step forward unless we know where our foot is going to land. When we sit down to
a programming session, what is it we intend to accomplish?

One strategy for keeping track of what we’re trying to accomplish is to hold it all in
our heads. I tried this for several years, and found I got into a positive feedback
loop. The more experience I accumulated, the more things I knew that might need
to be done. The more things I knew might need to be done, the less attention I had
for what I was doing. The less attention I had for what I was doing, the less I
accomplished. The less I accomplished, the more things I knew that needed to be
done.

Just ignoring random items on the list and programming at whim did not appear to
work to break this cycle.

I got in the habit of writing down everything I wanted to accomplish over the next
few hours on a slip of paper next to my computer. I had a similar list, but with
weekly or monthly scope pinned on the wall. As soon as I had all that written down,
I knew I wasn’t going to forget something. When a new item came up, I would
quickly and consciously decide whether it belonged on the “now” list, the “later”
list, or it didn’t really need to be done at all.

Applied to test-driven development, what we put on the list are the tests we want to
implement.First, put on the list examples of every operation that you know you
need to implement. Next, for those operations that don’t already exist, put the null
version of that operation on the list. Finally, list all the refactorings that you think
you will have to do to have clean code at the end of this session.

Instead of outlining the tests, we could just go ahead and implement them all. There
are a couple of reasons writing tests en masse hasn’t worked for me. First, every
test you implement is a bit of inertia when you have to refactor. With automated
refactoring tools (e.g. you have a menu item that renames the declaration and all
uses of a variable) this is less of a problem, but when you’ve implemented ten tests

and then you discover the arguments need to be in the opposite order, you are just
that much less likely to go clean up. Second, if you have ten tests broken, you are a
long way from the green bar. If you want to get to green quickly, you have to throw
all ten tests away. If you want to get all the tests working, you are going to be star-
ing at a red bar for a long time. If you are sufficiently addicted to the green bar you
can’t go to the bathroom if the bar is red, that can be an eternity.

Conservative mountain climbers have a rule that of your four hands and feet, three
of them must be attached at any one time. Dynamic moves where you let go of two
at once are much more dangerous. The pure form of TDD, where you are never
more than one change away from a green bar, is like that three out of four rule.

As you make the tests run, the implementation will imply new tests. Write the new
tests down on the list. Likewise with refactorings. “This is getting ugly.” “<sigh>
Put it on the list. We’ll get to it before we check in.”

Items that are left on the list when the session is done need to be taken care of. If
you are really half way through a piece of functionality, use the same list later. If
you have discovered larger refactorings that are out of scope for the moment, move
them to the “later” list. I can’t recall ever moving a test case to the “later” list. If I
can think of a test that might not work, getting it to work is more important than
releasing my code.

Test First

When should you write your tests? Before you write the code that is to be tested.

You won’t test after. Your goal as a programmer is running functionality. However,
you need a way to think about design, you need a method for scope control.

Let’s look at the usual influence diagram relating stress and testing (but not stress
testing, that’s different):

Stress above negatively connected to testing below negatively connected to stress.

The more stress you feel, the less likely you are to test enough. When you know
you haven’t tested enough, you add to your stress. Positive feedback loop. Once
again, there needs to be a way to break the loop.

What if we adopted the rule that we would always test first. Then we can invert the
diagram and get a virtuous cycle:
129

Test-Driven Development Patterns

130
Test-first above negatively connected to stress below negatively connected to test-
First..

When we test first, we reduce the stress, which makes us more likely to test. There
are lots of other elements feeding into stress, however, so the tests must live in
other virtuous cycles or they will be abandoned when stress increases enough.
However, the immediate payoff for testing—a design and scope control tool—sug-
gests that we will be able to start doing it, and keep doing it even under moderate
stress.

Assert First

When should you write the asserts? Try writing them first.

Don’t you just love self-similarity?

• Where should you start building a system? With stories you want to be able to
tell about the finished system.

• Where should you start writing a bit of functionality? With the tests you want to
pass with the finished code.

• Where should you start writing a test? With the asserts that will pass when it is
done.

Jim Newkirk introduced me to this technique. When I test assert-first I find it has a
powerful simplifying effect. When you are writing a test, you are solving several
problems at once, even if you no longer have to think about the implementation.

• Where does the functionality belong? Is it a modification of an existing method,
a new method on an existing class, an existing method name implemented in a
new place, or a new class?

• What should the names be called?

• How are you going to check for the right answer?

• What is the right answer?

• What other tests does this test suggest?

Pea-sized brains like mine can’t possibly do a good job of solving all these prob-
lems at once. The two problems from the list that can be easily separated from the
rest are "what is the right answer?" and "how am I going to check?"

Here’s an example. Suppose we want to communicate with another system over a
socket. When we’re done, the socket should be closed and we should have read the
string "abc".

testCompleteTransaction() {
...
assertTrue(reader.isClosed());
assertEquals("abc", reply.contents());

}

Where does the reply come from? The socket, of course:

testCompleteTransaction() {
...
Buffer reply= reader.contents();
assertTrue(reader.isClosed());
assertEquals("abc", reply.contents());

}

And the socket? We create it by connecting to a server:

testCompleteTransaction() {
...
Socket reader= Socket("localhost", defaultPort());
Buffer reply= reader.contents();
assertTrue(reader.isClosed());
assertEquals("abc", reply.contents());

}

But before this, we need to open a server:

testCompleteTransaction() {
Server writer= Server(defaultPort(), "abc");
Socket reader= Socket("localhost", defaultPort());
Buffer reply= reader.contents();
assertTrue(reader.isClosed());
assertEquals("abc", reply.contents());

}

Now we may have to adjust the names based on actual usage, but we have created
the outlines of the test in teensy tiny steps, informing each decision with feedback
within seconds.
131

Test-Driven Development Patterns

132
Test Data

What data do you use for test-first tests? Use data that makes the tests easy to read
and follow.

You are writing tests to an audience. Don’t scatter data values around just to be
scattering data values around. If there is a difference in the data, it should be mean-
ingful. If there isn’t a conceptual difference between 1 and 2, use 1.

Test Data isn’t a license to stop short of full confidence. If your system has to han-
dle multiple inputs, your tests should reflect multiple inputs. However, don’t have a
list of 10 items as the input data if a list of 3 items will lead you to the same design
and implementation decisions.

One trick in Test Data is to try to never use the same constant to mean more than
one thing. If I am testing a plus() method, it is tempting to test 2 + 2, since that is
the classic example of addition, or 1 + 1, since that is so simple. What if we got the
arguments reversed in the implementation? (Okay, okay, that doesn’t matter in the
case of plus(), but you get the idea.) If we use 2 for the first argument we should use
3, for example, for the second. (“3 + 4” was a watershed test case when bringing up
a new Smalltalk virtual machine back in the olden days.)

The alternative to Test Data is Realistic Data, where you use data from the real
world. Realistic Data is useful when:

• You are testing real-time systems using traces of external events gathered from
the actual execution

• You are matching the output of the current system with the output of a previous
system (Parallel Testing)

• You are refactoring a simulation and expect precisely the same answers when
you are finished, particularly if floating point accuracy may be a problem

Evident Data

How do you represent the intent of the data? Include expected and actual results in
the test itself, and try to make their relationship apparent.

You are writing tests for a reader, not just the computer. Someone in decades to
come will be asking themselves the question, "What in the heck was this joker

thinking about?" You’d like to leave as many clues as possible, especially if that
frustrated reader is going to be you.

Here’s an example. If we convert from one currency to another, we take a 1.5%
commission on the transaction. If the exchange rate from USD to GBP is 2:1, then
if we exchange $100, we should get 50 GBP - 1.5% = 49.25 GBP. We could write
this test like this:

Bank bank= new Bank().
bank.addRate("USD", "GBP", STANDARD_RATE);
bank.commission(STANDARD_COMMISSION);
Money result= bank.convert(new Note(100, "USD"), "GBP");
assertEquals(new Note(49.25, "GBP"), result);

or we could try to make the calculation obvious:

Bank bank= new Bank();
bank.addRate("USD", "GBP", 2);
bank.commission(0.015);
Money result= bank.convert(new Note(100, "USD"), "GBP");
assertEquals(new Note(100 / 2 * (1 - 0.015), "GBP"), result);

I can read this test and see the connection between the numbers used in the input
and the numbers used to calculate the expected result.

One beneficial side effect of Evident Data is that it makes programming easier.
Once we’ve written the expression in the assertion, we know what we need to pro-
gram. Somehow we have to get the program to evaluate a division and a multiplica-
tion. We can even use Fake It to discover where the operations belong
incrementally.

Evident Data seems to be an exception to the rule that you don’t want magic num-
bers in your code. Within the scope of a single method, the relationship between the
5’s is obvious. If I had symbolic constants that were already defined, though, I
would use the symbolic form.

Further Study

Bob Binder, Testing Object-Oriented Systems: Models, Patterns, and Tools, Addi-
son-Wesley, 1999, ISBN 0201809389 is the comprehensive reference on testing.
133

Test-Driven Development Patterns

134
Brian Marick, Craft of Software Testing: Subsystems Testing Including Object-
Based and Object-Oriented Testing, Prentice-Hall, 1997, ISBN 0131774115 is a
more pragmatic look at testing.

???others???

CHAPTER 29 Red Bar Patterns
These patterns are about when you write tests, where you write tests, and when you
stop writing tests.

One Step Test

Which test should you pick next from the list? Pick a test that will teach you some-
thing and that you are confident you can implement.

Each test should represent one step towards your overall goal. If we are looking at
the following Test List, which test should we pick next?
135

Red Bar Patterns

136
Plus
Minus
Times
Divide
Plus like
Equals
Equals null
Null exchange
Exchange one currency
Exchange two currencies
Cross rate

There is no right answer. What is one step for me, never having implemented these
objects before, will be one tenth of a step to you, with your vast experience.

When I look at a Test List, I think, “That’s obvious, that’s obvious, I have no idea,
obvious, what was I thinking about with that one, ah, this one I can do.” That last
test is the test I implement next. It didn’t strike me as obvious, but I’m also confi-
dent I can make it work.

If you don’t find any test on the list that represents one step, add some new tests
that would represent progress towards the items there.

A program grown from tests like this can appear to be written top-down, because
you can begin with a test that represents a simple case of the entire computation. A
program grown from tests can also appear to be written bottom-up, because you
start with small pieces and aggregate them larger and larger.

Neither top-down nor bottom-up really describes the process helpfully. First, a ver-
tical metaphor is a simplistic visualization of how programs change over time.
“Growth” implies a kind of self-similar feedback loop where the environment
affects the program and the program affects the environment. Second, if we have to
have a direction in our metaphor, “known-to-unknown” is a helpful description.
Known-to-unknown implies that we have some knowledge and experience on
which to draw, and that we expect to learn in the course of development. Put these
two together and we have programs growing from known to unknown.

Starter Test

Which test should you start with? Start by testing a variant of an operation that
doesn’t do anything.

The first question you have to ask with a new operation is "Where does it belong?"
Until you’ve answered this question, you don’t know what to type for the test. In
the spirit of solving one problem at a time, how can we answer just this question
and no other?

If you write a “realistic” test first, you will find yourself solving a bunch of prob-
lems at once:

• Where does the operation belong?

• What are the correct inputs?

• What is the correct output given those inputs?

Beginning with a realistic test will leave you too long without feedback. Red/green/
refactor, red/green/refactor. You want that loop to be minutes.

You can shorten the loop by choosing inputs and outputs that are trivially easy to
discover. For example, a poster on the Extreme Programming newsgroup asked
about how to write a polygon reducer test-first. The input is a mesh of polygons and
the output is a mesh of polygons that describes precisely the same surface, but with
the fewest possible polygons. “How can I test-drive this problem since getting a test
to work requires reading Ph.D. theses?”

Starter Test provides an answer:

• The output should be the same as the input. Some configurations of polygons
are already normalized, incapable of further reduction.

• The input should be as small as possible, like a single polygon, or even an
empty list of polygons.

My Starter Test looked like this:

Reducer r= new Reducer(new Polygon());
assertEquals(0, reducer.result().npoints);

Bing! First test is running. Now for all the rest of the tests on the list...

One Step Test applies. Pick a Starter Test that will teach you something but that
you are certain you can get working quickly. If you are implementing something
for the Nth time, pick a test that will require an operation or two. You will be justi-
fiably confident you can get it working. If you are implementing something hairy
and complicated for the first time, you need a little courage pill immediately.
137

Red Bar Patterns

138
I find that my Starter Test is often at a higher level, more like an application test,
than the following tests. One example I often test-drive is a simple socket-based
server. The first test looks like this:

StartServer
Socket= new Socket
Message= “hello”
Socket.write(message)
AssertEquals(message, socket.read)

The rest of the tests are written in the server alone, “assuming we receive a string
like this…”

Another Starter Test came from the game of Life. The folks discussing it were talk-
ing about tests for cells, and sizes, and two dimensional arrays vs. hash tables with
points as keys. My Starter Test looked like this:

Explanation Test

How do you spread the use of automated testing? Ask for and give explanations in
terms of tests.

It can be frustrating to be the only TDD on a team. Soon, you will notice fewer inte-
gration problems and defect reports in tested code, and the designs will be simpler
and easier to explain. It has even happened before that folks get downright enthusi-
astic about testing, and testing first.

Beware the enthusiasm of the newly converted. Nothing will stop the spread of
TDD faster than pushing it in people’s faces. If you’re a manager or leader, you
can’t force anyone to change the way they work.

What can you do? A simple start is to start asking for explanations in terms of test
cases. “Let me see if I understand what you’re saying. For example, if I have a Foo
like this and a Bar like that then the answer should be 76?” A companion technique
is to start giving explanations in terms of tests. “Here’s how it works now. When I
have a Foo like this and a Bar like that, the answer is 76. If I have a Foo like that
and a Bar like this, though, I would like the answer to be 67.”

You can do this at higher levels of abstraction. If someone is explaining a sequence
diagram to you, you can ask for permission to convert it to a more familiar notation.

Then you type in a test case that contains all the externally visible objects and mes-
sages in the diagram.

Learning Test1

When do you write tests for externally produced software? Before the first time you
are going to use a new facility in the package.

Let’s say we are going to develop something on top of the Mobile Information
Device Profile library for Java. We want to store some data in the RecordStore and
retrieve it. Do we just write the code and expect it to work? That’s one way to
develop.

An alternative is to notice that we are about to use a new method of a new class.
Instead of just using it, we write a little test that verifies that the API works as
expected. So, we might write:

RecordStore store;

public void setUp() {
store= RecordStore.openRecordStore("testing", true);

}

public void tearDown() {
RecordStore.deleteRecordStore("testing");

}

public void testStore() {
int id= store.addRecord(new byte[] {5, 6}, 0, 2);
assertEquals(2, store.getRecordSize(id));
byte[] buffer= new byte[2];
assertEquals(2, store.getRecord(id, buffer, 0));
assertEquals(5, buffer[0]);
assertEquals(6, buffer[1]);

}

If our understanding of the API is correct, the test will pass first time.

1. Thanks to Jim Newkirk and Laurent Bossavit for independently sug-
gesting this pattern.
139

Red Bar Patterns

140
Jim Newkirk reported on a project in which Learning Tests were routinely written.
When new releases of the package arrived, first the tests were run (and fixed, if nec-
essary.) If the tests didn’t run, there was no sense running the application because it
certainly wouldn’t run. Once the tests ran, the application ran every time.

Another Test

How do you keep a technical discussion from straying off topic? When a tangential
idea arises, add a test to the list and go back to the topic.

I love wandering discussions (you’ve read most of the book now, so you’ve proba-
bly reached that conclusion yourself). Keeping a conversation strictly on course is a
great way to stifle brilliant ideas. You hop from here to there to there, and how did
we get here? Who cares, this is cool!

Sometimes programming relies on breakthroughs. Most programming, though, is a
bit more pedestrian. I have ten things to implement. I become an accomplished pro-
crastinator about item number four. Retreating to hummingbird conversation is one
of my ways of avoiding work (and maybe the fear that goes along with it.)

Whole unproductive days have taught me that at times it’s best to stay on track.
When I’m feeling this way, new ideas are greeted with respect, but not allowed to
divert my attention. I write them down on the list, and get back to what I was work-
ing on.

Regression Test

What’s the first thing you do when a defect is reported? Write the smallest possible
test that fails, and that once it runs, the defect will be repaired.

Regression tests are tests that, with perfect foreknowledge, you would have written
when coding originally. Every time you have to write a regression test, think about
how you could have known to write the test in the first place.

You will also gain value by testing at the level of the whole application. Regression
tests for the application give your users a chance to speak concretely to you about
what is wrong and what they expect. Regression tests at the smaller scale are a way
for you to improve your testing. The defect report will be about a bizarre large neg-
ative number in a report. The lesson for you is that you need to test for integer roll-
over when you are writing your test list.

You may have to refactor the system before you can easily isolate the defect. The
defect in this case was your system’s way of telling you, “You aren’t quite done
designing me yet.”

Break

What do you do when you feel tired or stuck? Take a break.

Take a drink, take a walk, take a nap. Wash your hands clean of your emotional
commitment to the decisions you just made and the characters you typed.

Often, this amount of distance is all it will take to break loose the idea you’ve been
lacking. You’ll just be standing up when you realize, “I haven’t tried it with the
parameters reversed!” Take the break anyway. Give yourself a couple of minutes.
The idea won’t go away.

If you don’t get “the idea”, review your goals for the session. Are they still realistic
or should you pick new goals? Is what you were trying to accomplish impossible?
If so, what are the implications for the team?

Dave Ungar calls this his Shower Methodology. If you know what to type, type. If
you don’t know what to type, take a shower. Many teams would be happier, more
productive, and smell a whole lot better if they took his advice.

TDD is a refinement on the Ungar Shower Methodology. If you don’t know what to
type, fake it. If the “right” design still isn’t clear, triangulate. If you still don’t know
what to type, then you can take that shower.

Here is an influence diagram that shows the positive feedback loop at work:

Fatigue negatively affects judgement which negatively affects fatigue

You’re getting tired, so you’re less capable of realizing that you’re tired, so you
keep going and get more tired.

The way out of this loop is to introduce an additional outside element.

• At the scale of hours, keep a water bottle by your keyboard so biology provides
the motivation for regular breaks.

• At the scale of a day, commitments after regular work hours can help you stop
when you need sleep before progress.
141

Red Bar Patterns

142
• At the scale of a week, weekend commitments help get your conscious, energy-
sucking thoughts off work. (My wife swears I get my best ideas Friday
evening.)

• At the scale of a year, mandatory vacation policies help you refresh yourself
completely. The French do this right—two contiguous weeks of vacation aren’t
enough. You spend the first week decompressing, and the second week getting
ready to go back to work. Therefore three weeks, or better four, are necessary
for you to be your most effective the rest of the year.

There is a flip side to taking breaks. Sometimes when faced with a tough problem
what you need to do is press on, push through it. However, programming culture is
so infected with macho, “I’ll ruin my health, alienate my family, and kill myself if
necessary,” spirit that I don’t feel compelled to give any advice along these lines. If
you find yourself caffeine-addicted and making no progress whatsoever, perhaps
you shouldn’t take quite so many breaks. In the meantime, take a walk.

Do Over

What do you do when you are feeling lost? Throw away the code and start over.

You’re lost. You’ve taken the break, rinsed your hands in the brook, sounded the
Tibetan temple bell, and still you’re lost. The code that was going so well an hour
ago is now a mess, you can’t think of how to get the next test case working, and
you’ve thought of 20 more tests that you really should implement.

This has happened to me several times in writing this book. I would get the code a
bit twisted. “But I have to finish the book. The children are starving and the bill col-
lectors are pounding on the door.” My gut reaction would be to untwist it just
enough to move on. After a pause for reflection, starting over always made more
sense. The one time I pressed on regardless, I had to throw away 25 pages of manu-
script because it was based on an obviously stupid programming decision.

My favorite example of Do Over is a story Tim Mackinnon told me. He was inter-
viewing someone by the simple expedient of asking her to pair program with him
for an hour. At the end of the session, they’d implemented several new test cases
and done some nice refactoring. It was the end of the day, though, and they felt
tired when they were done, so they discarded their work.

If you pair program, switching partners is a good way to motivate productive Do
Overs. You’ll try to explain the complicated mess you made for a few minutes

when your new partner, completely uninvested in the mistakes you’ve made, will
gently take the keyboard and say, “I’m terribly sorry for being so dense, but what if
we started like this…”

Cheap Desk, Nice Chair

What physical setup should you use for test-driven development? Get a really nice
chair, skimping on the rest of the furniture if necessary.

You can’t program well if your back hurts. Yet, organizations that will spend a hun-
dred thousand dollars a month on a team won’t spend ten thousand dollars on
decent chairs.

My solution is to use cheap, ugly folding tables for my computers, but buy the best
chairs I can find. I have plenty of desk space, and I can easily get more, and I am
fresh and ready for programming in the afternoon and the morning.

Get comfortable when you’re pair programming. Clean off the desk surface enough
that you can slide the keyboard back and forth. Each partner should be able to sit
comfortably directly in front of the keyboard when they are driving. One of my
favorite coaching tricks is to come up behind a pair that is hacking away and gently
slide the keyboard so it is comfortably placed for the person typing.

Manfred Lange points out that careful resource allocation also applies to computer
hardware. Get cheap/slow/old machines for individual email and surfing, and the
hottest possible machines for shared development.

Further Study

Tom DeMarco and Tim Lister, Peopleware, Dorset House, 1999, ISBN
0932633439 is an excellent introduction to the people side of computing.

Constantine, Peopleware Paper

Weinberg, Psychology of Computer Programming,
143

Red Bar Patterns

144

CHAPTER 30 Testing Patterns
Child Test

How do you get a test case running that turns out to be too big? Write a smaller test
case that represents the broken part of the bigger test case. Get the smaller test case
running. Reintroduce the larger test case.

The red/green/refactor rhythm is so important for continuous success that when you
are at risk of losing it, it is worth extra effort to maintain it. This commonly hap-
pens to me when I write a test that accidentally requires several changes to make
work. Even ten minutes with a red bar gives me the willies.

When I write a test that is too big, I first try to learn the lesson. Why was it too big?
What could I have done differently that would have made it smaller? How am I
feeling right now?

Metaphysical navel gazing accomplished, I delete the offending test and start over.
“Well, getting these three things working at once was too much. If I had A, B, and
C working, though, getting the whole thing working would be a cinch.” Sometimes
I really delete the test, sometimes I just change the name to begin with an “x” so it
won’t be run. (Can I tell you a secret? Sometimes I don’t even bother to delete the
offending test. Shhhhh… I live with two, count ‘em two, broken tests for a matter
of a couple of minutes while I get the child test working. I could be making a mis-
145

Testing Patterns

146
take when I do this. Two broken tests could easily be a holdover from my bad old
test-last-if-ever days.)

Try it both ways yourself. See if you feel different, program different, when you
have two tests broken. Respond as appropriate.

Mock Object

How do you test an object that relies on an expensive or complicated resource? Cre-
ate a fake version of the resource that answers constants.

There is at least a book’s worth of material in Mock Object1, but this will serve as
an introduction.

The classic example is a database. Databases take a long time to start, they are dif-
ficult to keep clean, and if they are located on a remote server, they tie your tests to
a physical location on a network. The database is also a fertile source of error in
development.

The solution is not to use a real database most of the time. Most tests are written in
terms of an object that acts like a database, but is really just sitting in memory.

public void testOrderLookup() {
Database db= new MockDatabase();
db.expectQuery("select order_no from Order where cust_no is

123");
db.returnResult(new String[] {"Order 2" ,"Order 3"});
…

}

If the MockDatabase does not get the query it expects, it throws an exception. If the
query is correct, it returns something that looks like a result set constructed from
the constant strings.

Another value of mocks, aside from performance and reliability, is readability. You
can read the test above from one end to another. If you have a test database full of
realistic data, when you see that a query should have resulted in 14 replies, you
have no idea why 14 is the right answer.

1. For example, see www.mockobjects.com.

If you want to use Mock Objects, you can’t easily store expensive resources in glo-
bal variables (even if they masquerade as Singletons). If you do, you will have to
set the global to a Mock Object, run the test, and be sure to reset the global when
you are done

There have been times when I was furious at this restriction. Massimo Arnoldi and
I were working on some code relying on a set of exchange rates stored in a global
variable. Each test needed different subsets of the data, and sometimes they needed
different exchange rates. After a while of trying to get the global variable to work,
we decided one morning (courageous design decisions come more often in the
morning for me) to just pass the Exchange around wherever we needed it. We
thought we would have to modify hundreds of methods. In the end, we added a
parameter to ten or fifteen methods, and cleaned up other aspects of the design
along the way.

Mocks will encourage you down the path of carefully considering the visibility of
every object, reducing the coupling in your designs.

Mock Objects add a risk to the project—what if the mock doesn’t behave like the
real object? You can reduce this strategy by having a set of tests for the mock that
can also be applied to the real object when it becomes available.

Self Shunt

How do you test that one object communicates correctly with another? Have the
object under test communicate with the test case instead of with the object it
expects.

Suppose we wanted to dynamically update the green bar on the testing user inter-
face. If we could connect an object to the TestResult, it could be notified when a
test ran, when it failed, when a whole suite started and finished, and so on. When-
ever we were notified that a test ran, we would update the interface. Here’s a test
for this:

ResultListenerTest

def testNotification(self):
result= TestResult()
listener= ResultListener()
result.addListener(listener)
WasRun("testMethod").run(result)
assert 1 == listener.count
147

Testing Patterns

148
The test needs an object to count the number of notifications:

ResultListener

class ResultListener:
def __init__(self):

self.count= 0
def startTest(self):

self.count= self.count + 1

But wait. Why do we need a separate object for the listener? We can just use the
test case itself. The TestCase itself becomes a kind of Mock Object.

ResultListenerTest

def testNotification(self):
self.count= 0
result= TestResult()
result.addListener(self)
WasRun("testMethod").run(result)
assert 1 == self.count

def startTest(self):
self.count= self.count + 1

Tests written with Self Shunt tend to read better than tests written without. The test
above is a good example. The count was 0, and then it was 1. How did it get to be
1? Someone must have called startTest(). How did startTest() get called? It must
happen when running the test. This is another example of symmetry—the second
version of the test method has the two values for count in one place, where in the
first version the count is set to 0 in one class and expected to be 1 in another.

Self Shunt may require that you use Extract Interface to get an interface to imple-
ment. You will have to decide whether extracting the interface is easier or if testing
the existing class as a black box is easier. I have noticed, though, that interfaces
extracted for shunts tend to get their third and subsequent implementations soon
thereafter.

As a result of using Self Shunt, you will see tests in Java implementing all sorts of
bizarre interfaces. In optimistically typed languages, the test case class need only
implement those operations that are actually used in the running of the test. In Java,
however, you have to implement all the operations of the interface, even if most of
the implementations are empty, so you would like interfaces to be as narrow as pos-
sible. The implementations should either return a reasonable value or throw an

exception, depending on whether you want to be notified if an unexpected opera-
tion is invoked.

Log String

How do you test that the sequence in which messages are called is correct? Keep a
log in a string, and append to the string when a message is called.

The example from xUnit serves. We have a Template Method which we expect to
call setUp(), a testing method, and tearDown(), in that order. By implementing the
methods to record in a string that they were called, the test reads nicely:

def testTemplateMethod(self):
test= WasRun("testMethod")
result= TestResult()
test.run(result)
assert("setUp testMethod tearDown " == test.log)

And the implementation is simple, too:

WasRun

def setUp(self):
self.log= "setUp "

def testMethod(self):
self.log= self.log + "testMethod "

def tearDown(self):
self.log= self.log + "tearDown "

Log Strings are particularly useful when you are implementing Observer and you
expect notifications to come in a certain order. If you expected certain notifications
but you didn’t care about the order, you could keep a set of strings, and use set
comparison in the assertion.

Log String works well with Self Shunt. The test case implements the methods in the
shunted interface by adding to the log and then returning reasonable values.

Crash Test Dummy

How do you test error code that is unlikely to be invoked? Invoke it anyway with a
special object that throws an exception instead of doing real work.
149

Testing Patterns

150
Code that isn’t tested doesn’t work. This seems to be the safe assumption. What to
do with all those odd error conditions, then? Do you have to test them, too? Only if
you want them to work.

Let’s say we want to test what happens to our application when the file system is
full. We could go to a lot of work to create many big files and fill the file system, or
we could fake it. “Fake it” doesn’t sound dignified, does it? We’ll simulate it.

Here’s our crash test dummy for a file:

private class FullFile extends File {
public FullFile(String path) {

super(path);
}
public boolean createNewFile() throws IOException {

throw new IOException();
}

}

Now we can write our Expected Exception test:

public void testFileSystemError() {
File f= new FullFile("foo");
try {

saveAs(f);
fail();

} catch (IOException e) {
}

}

A Crash Test Dummy is like a Mock Object, except you don’t need to Mock up the
whole object. Java’s anonymous inner classes work well for sabotaging just the
right method to simulate the error we want to exercise. You can override just the
one method you want, right there in your test case, making the the test case easier to
read:

public void testFileSystemError() {
File f= new File("foo") {

public boolean createNewFile() throws IOException {
throw new IOException();

}
};

try {
saveAs(f);
fail();

} catch (IOException e) {
}

}

Broken Test

How do you leave a programming session when you’re programming alone? Leave
the last test broken.

Richard Gabriel taught me the trick of finishing a writing session in mid-sentence.
When you sit back down, you look at the half sentence and you have to figure out
what you were thinking when you wrote it. Once you have the thought thread back,
you finish the sentence and continue. Without the urge to finish the sentence, you
can spend many minutes first sniffing around for what to work on next, then trying
to remember your mental state, then finally getting back to typing.

I tried the analogous technique for my solo projects and I really like the effect. Fin-
ish a solo session by writing a test case and running it to be sure it doesn’t pass.
When you come back to the code, you have an obvious place to start, you have an
obvious, concrete bookmark to help you remember what you were thinking, and
making that test work should be quick work, so you’ll quickly get your feet back on
that victory road.

I thought it would bother me to have a test broken overnight. It doesn’t, I think
because I know that the program isn’t finished. A broken test doesn’t make the pro-
gram any less finished, it just makes the status of the program manifest. The ability
to quickly pick up a thread of development after weeks of hiatus is worth that little
twinge of walking away from a red bar.

Clean Check-in

How do you leave a programming session when you’re programming in a team?
Leave all the tests running.

“Do I contradict myself? Tough.”

–Bubba Whitman, Walt’s stevedore brother
151

Testing Patterns

152
When you are responsible to your teammates, the picture changes completely.
When you start programming on a team project, you don’t know in detail what has
happened to the code since you saw it last. You need to start from a place of confi-
dence and certainty. Therefore, always make sure all the tests are running before
you check in your code (a bit like how each test case leaves the world in a known-
good state, if you are prone to computer metaphors for human behavior, which I’m
not (usually)).

The test suite you run when you check in may be more extensive than the one you
are running every minute during development (don’t give up on running the whole
suite all the time until it is slow enough to be annoying). You will occasionally find
a test broken in the integration suite when you try to check in. What to do?

The simplest rule is to just throw away your work and start over. The broken test is
pretty strong evidence that you didn’t know enough to program what you just pro-
grammed. If the team adopted this rule, there would be a tendency for folks to
check in more often because the first person to check in doesn’t risk losing any
work. Checking in more often is probably a good thing.

A slightly more libertine approach is to give you a chance to fix the defect and try
again. To keep from dominating the integration resources, you should probably
give up after a few minutes and start over. It goes without saying, so I’ll say it any-
way, that commenting out tests to make the suite pass is strictly verboten, and
grounds for some serious beer purchasing at that Friday late afternoon’s offsite
planning meeting.

Further Study

???version control/configuration management???

www.mockobjects.com

CHAPTER 31 Green Bar Patterns
Once you have a broken test, you need to fix it. If you treat a red bar as a condition
to be fixed as quickly as possible, you will discover that you can get to green
quickly. These patterns are how to make the code pass (even if the result isn’t
something you want to live with for even an hour).

Fake It (‘Til You Make It)

What is your first implementation once you have a broken test? Return a constant.
Once you have the test running, gradually transform the constant into an expression
using variables.

A simple example occurred in our implementation of xUnit.

return "1 run, 0 failed"

became:

return "%d run, 0 failed" % self.runCount

became:

return "%d run, %d failed" % (self.runCount , self failureCount)
153

Green Bar Patterns

154
Fake It is a bit like driving a piton above your head when you are climbing a rock.
You haven’t really gotten there yet (the test is there but the code structure is
wrong). However, when you do get there, you know you will be safe (the test will
still run).

Fake It really rubs some people the wrong way. Why would you do something that
you know you have to rip out? Because having something running is better than not
having something running, especially if you have the tests to prove it. Peter Hansen
submitted this story:

… something happened just yesterday where, as two newbies to TDD, my partner
and I aggressively stuck to the letter of the law and committed sins to get a test
working quickly. In the process, we realized we had not properly implemented the
test so we went back and fixed that, then made the code work again. The first
working code ended up not being anywhere in sight by the time it worked again
and we sort of looked at each other and said, “Huh... would you look at that!”
because that approach had taught us something we didn’t know.

How could a fake implementation have taught them their test was written wrong? I
don’t know, but I’ll bet they were glad they didn’t invest in the real solution to find
out.

There are a couple of effects that make Fake It powerful:

• Psychological—Having a green bar feels completely different than having a red
bar. When the bar is green, you know where you stand. You can refactor from
there with confidence.

• Scope control—Programmers are good at imagining all sorts of future prob-
lems. Starting with one concrete example and generalizing from there prevents
you from prematurely confusing yourself with extraneous concerns. You can do
a better job of solving the immediate problem because you are focused. When
you go to implement the next test case, you can focus on that one, too, knowing
that the previous test is guaranteed to work.

Does Fake It violate the rule that says you don’t write any code that isn’t needed? I
don’t think so, because in the refactoring step you are eliminating duplication of

data between the test case and the code. When I write1:

assertEquals(new MyDate("28.2.02"), new
MyDate("1.3.02").yesterday());

1. Thanks to Dierk König for the example.

MyDate

public MyDate yesterday() {
return new MyDate("28.2.02");

}

There is duplication between the test and the code. I can shift it around by writing:

MyDate

public MyDate yesterday() {
return new MyDate(new MyDate("31.3.02").days()-1);

}

But there is still duplication. However, I can eliminate the data duplication (because
this = MyDate(“31.1.02”) for the purposes of my test) by writing:

MyDate

public MyDate yesterday() {
return new MyDate(this.days()-1);

}

Not everyone is convinced by this bit of sophistry, which is why you can Triangu-
late, at least until you are tired of it and start using Fake It or even Obvious Imple-
mentation.

When I use Fake It, I’m reminded of long car trips with kids in the back. I write the
first test, I make it work some ugly way, and then, “Don’t make me stop this car
and write another test. If I have to pull over, you’ll be sorry.” “Okay, okay, Dad. I’ll
clean the code up. You don’t have to get all huffy.”

Triangulate

How do you most conservatively drive abstraction with tests? Only abstract when
you have two or more examples.

Here’s an example. Suppose we want to write a function that will return the sum of
two integers. We write:

public void testSum() {
assertEquals(4, plus(3, 1));

}

155

Green Bar Patterns

156
private int plus(int augend, int addend) {
return 4;

}

If we are triangulating to the right design, we have to write:

public void testSum() {
assertEquals(4, plus(3, 1));
assertEquals(7, plus(3,4));

}

When we have the second example, we can abstract the implementation of plus():

private int plus(int augend, int addend) {
return augend + addend;

}

Triangulation is attractive because the rules for it seem so clear. The rules for Fake
It, where we are relying on our sense of duplication between the test case and the
fake implementation to drive abstraction, seem a bit vague and subject to interpre-
tation. While they seem simple, the rules for triangulation create an infinite loop.
Once we have the two assertions and we have abstracted the correct implementa-
tion for plus, we can delete one of the assertions on the grounds that it is completely
redundant with the other. If we do that, however, we can simplify the implementa-
tion of plus() to just return a constant, which requires us to add an assertion.

I only use triangulation when I’m really, really unsure about the correct abstraction
for the calculation. Otherwise I rely on either Obvious Implementation or Fake It.

Obvious Implementation

How do you implement simple operations? Just implement them.

Fake It and Triangulation are teensy-weensy tiny steps. Sometimes you are sure
you know how to implement an operation. Go ahead. For example, would I really
use Fake It to implement something as simple as plus()? Not usually. I would just
type in the obvious implementation. If I noticed I was getting surprised by red bars,
I would go to smaller steps.

There’s no particular virtue in the halfway nature of Fake It and Triangulate. If you
know what to type, and you can do it quickly, do it. However, by using only Obvi-

ous Implementation, you are demanding perfection of yourself2. Psychologically,
this can be a devastating move. What if what you write isn’t really the simplest
change that could get the test to pass? What if your partner shows you an even sim-
pler one? You’re a failure! Your world crumbles around you! You die. Freeze up.

Solving “clean code” at the same time you solve “that works” can be too much to
do at once. As soon as it is, go back to solving “that works,” then “clean code” at
leisure.

Keep track of how often you get surprised by red bars using Obvious Implementa-
tion. I’ll get stuck in these cycles where I’ll type in an Obvious Implementation. It
won’t work. But now I’m sure I know what I should type, so I type that. It doesn’t
work. So now… This especially happens with off by one errors and positive/nega-
tive errors.

You want to maintain that red/green/refactor rhythm. Obvious Implementation is
second gear. Be prepared to downshift if your brain starts writing checks your fin-
gers can’t cash.

One to Many

How do you implement an operation that works with collections of objects? Imple-
ment it without the collections first, then make it work with collections.

For example, suppose we are writing a function to sum an array of numbers. We
can start with one:

public void testSum() {
assertEquals(5, sum(5));

}

private int sum(int value) {
return value;

}

(I am implementing sum() in the TestCase class to avoid writing a new class just for
one method.)

2. Thanks to Laurent Bossavit for this discussion.
157

Green Bar Patterns

158
We want to test sum(new int[] {5, 7}) next. First we add a parameter to sum() tak-
ing an array of values:

public void testSum() {
assertEquals(5, sum(5, new int[] {5}));

}

private int sum(int value, int[] values) {
return value;

}

You can look at this step as an example of Isolate Change. Once we add the param-
eter in the test case we are free to change the implementation without affecting the
test case.

Now we can use the collection instead of the single value:

private int sum(int value, int[] values) {
int sum= 0;
for (int i= 0; i<values.length; i++)

sum += values[i];
return sum;

}

Now we can delete the unused single parameter:

public void testSum() {
assertEquals(5, sum(new int[] {5}));

}

private int sum(int[] values) {
int sum= 0;
for (int i= 0; i<values.length; i++)

sum += values[i];
return sum;

}

The previous step is also an example of Isolate Change, where we change the code
so we can change the test cases without affecting the code. Now we can enrich the
test case as planned:

public void testSum() {
assertEquals(12, sum(new int[] {5, 7}));

}

Further Study

Pragmatic Programmer

Ritchie Elements of Style
159

Green Bar Patterns

160

CHAPTER 32 xUnit Patterns
Assertion

How do you check that tests worked correctly? Write boolean expressions that
automate your judgment about whether the code worked.

If we are going to make the tests fully automated, every bit of human judgment has
to be taken out of the evaluation of the results. We need to push a button and have
all the decisions necessary to verify the correct working of the code run by the com-
puter. This suggests that:

• The decisions have to be boolean—true generally means everything is okay and
false means something unexpected happened

• The state of the booleans have to be checked by computer, by calling some vari-
ant of an “assert()” method

I’ve seen assertions like “assertTrue(rectangle.area() != 0)”. You could return any-
thing not null and satisfy this test, so it isn’t very useful. Be specific. If the area
should be 50, say that it should be 50—“assertTrue(rectangle.area() == 50)”.
161

xUnit Patterns

162
Many xUnit implementations have a special assertion for testing equality. Testing
for equality is common, and if you know you are testing equality you can write an
informative error message. The expected value generally goes first, so in JUnit we
would write the above as “assertEquals(50, rectangle.area())”.

Thinking about objects as black boxed is hard. If I have a Contract with a Status
that can either be an instance of Offered or Running, I might feel like writing a test
based on my expected implementation:

Contract contract= new Contract(); // Offered status by default
contract.begin(); // Changes status to Running
assertEquals(Running.class, contract.status.class);

This test is too dependent on the current implementation of status. The test should
pass even if the representation of status changed to a boolean. Perhaps once the sta-
tus changes to Running, it is possible to ask for the actual start date.

assertEquals(…, contract.startDate()); // Throws an exception if the
status is Offered

I’m aware that I am swimming against the tide in insisting that all tests be written
using only public protocol. There is even a package that extends JUnit, JXUnit, that
allows testing the value of variables, even those declared private.

Wishing for white box testing is not a testing problem, it is a design problem. Any
time I want to use a variable as a way of checking to see whether code ran correctly
or not, I have an opportunity to improve the design. If I give in to my fear and just
check the variable, I lose that opportunity. That said, if the design idea doesn’t
come, it doesn’t come. I’ll check the variable, shed a tear, make a note to come
back on one of my smarter days, and move on.

The original SUnit (the first, Smalltalk, version of the testing framework) had sim-
ple assertions. If one broke, a debugger popped up, you fixed the code, and away
you went. Because the IDEs for Java aren’t so sophisticated, and because building
Java-based software often happens in a batch environment, it makes sense to add
information about the assertion which will be printed if it ever fails.

In JUnit, this takes the form of an optional first parameter1. If you write "assert-
True("Should be true", false)", when the test is run you will see an error message
something like "Assertion failed: Should be true". This is often enough information
to send you straight to the source of the error in the code. Some teams adopt the
convention that all assertions must be accompanied by an informative error mes-
sage. Try it both ways and see if the investment in the error messages pays off for
you.

Fixture

How do you create common objects needed by several tests? Convert the local vari-
ables in the tests into instance variables. Override setUp() and initialize those vari-
ables.

If we want to remove duplication from our model code, do we want to remove it
also from our test code? Maybe.

Here’s the problem—often you write more code setting objects up in an interesting
state than you write manipulating them and checking results. The code for setting
up the objects is the same for several tests (these objects are the test’s fixture, also
known as scaffolding.) This duplication is bad:

• It takes a while to write, even to copy-n-paste, and we’d like test writing to be
fast

• If we need to change an interface by hand, we have to change it in several tests
(exactly what we would expect of duplication)

The same duplication, however, is also good. Tests written with the set-up code
right there with the assertions are readable top to bottom. If we factored the set-up
code into a separate method we would have to remember that the method was
called, and remember what the objects looked like, before we could write the rest of
the test.

xUnit supports both styles of test writing. You can write the test-fixture-creating
code with the test, if you expect readers not to be able to easily remember the fix-
ture objects. However, you can also move common test-fixture-creating code into a

1. Optional parameters are supposed to come at the end, but for readability it helps to have
the explanatory string at the beginning.
163

xUnit Patterns

164
method called setUp(). In it, set instance variables to the objects that will be used in
the test.

Here is an example too simple to really motivate the value of factoring out common
set-up code, but short enough to fit in a book. We could write:

EmptyRectangleTest

public void testEmpty() {
Rectangle empty= new Rectangle(0,0,0,0);
assertTrue(empty.isEmpty());

}

public void testWidth() {
Rectangle empty= new Rectangle(0,0,0,0);
assertEquals(0.0, empty.getWidth(), 0.0);

}

(This also demonstrates the floating point version of assertEquals(), which requires
a tolerance.) We could get rid of the duplication by writing:

EmptyRectangleTest

private Rectangle empty;

public void setUp() {
empty= new Rectangle(0,0,0,0);

}

public void testEmpty() {
assertTrue(empty.isEmpty());

}

public void testWidth() {
assertEquals(0.0, empty.getWidth(), 0.0);

}

We have extracted the common code as a method, one that the framework is guar-
anteed to call before our test method is called. The test methods are simpler, but we
have to remember what is in setUp() before we can understand them.

Which style should you use? Try them both. I nearly always factor common set-up
code out, but I have a strong memory for detail. Readers of my tests sometimes
complain that there is too much to remember, so maybe I should factor out less.

The relationship of subclasses of TestCase and instances of those subclasses is one
of the most confusing parts of xUnit. Each new kind of fixture should be a new sub-
class of TestCase. Each new fixture is created in an instance of that subclass, used
once, then discarded.

In our example above, if we wanted to write tests for a non-empty Rectangle, we
would create a new class, perhaps NormalRectangleTest, and initialize a different
variable to a different rectangle in setUp(). In general, if I find myself wanting a
slightly different fixture, I start a new subclass of TestCase.

This implies that there is no simple relationship between test classes and model
classes. Sometimes one fixture serves to test several classes (although this is rare).
Sometimes two or three fixtures are needed for a single model class. In practice,
you usually end up with roughly the same number of test classes as model classes,
but not because for each and every model class you write one and only one test
class.

External Fixture

How do you release external resources in the fixture? Override tearDown() and
release the resources.

Remember that the goal of each test is to leave the world in exactly the same state
as before it ran. For example, if you open a file in a test, you need to be sure to close
it before the test completes. You could write:

testMethod(self):
file= File("foobar").open()
try:

...run the test...
finally:

file.close()

If the file was used in several tests, you could make it part of the common fixture:

setUp(self):
self.file= File("foobar").open()

testMethod(self):
165

xUnit Patterns

166
try:
...run the test...

finally:
self.file.close()

First, there is that pesky duplication of the finally clause telling us that we are miss-
ing something in the design. Second, this method is error prone because it is easy to
forget the finally clause, or forget to close the file altogether. Lastly, there are three
lines of noise in the test—try, finally, and the close itself, which is not central to the
running of the test.

xUnit guarantees that a method called tearDown() will be run after the test method.
TearDown() will be called regardless of what happens in the test method (although
if setUp() fails tearDown() won’t be called). We can transform the above to:

setUp(self):
self.file= File("foobar").open()

testMethod(self):
...run the test...

tearDown(self):
self.file.close()

Test Method

How do you represent a single test case? As a method (whose name begins with
“test” by convention.)

You are going to have hundreds, later thousands, of tests in your system. How are
you going to keep track of them all?

Object programming languages have three levels of hierarchy for organization:

• Module (“package” in Java)

• Class

• Method

If we are writing tests as ordinary source code, we need to find a way to fit into this
structure. If we are using classes to represent fixtures, then the natural home for
tests is as methods. All the tests sharing a single fixture will be methods in the same
class. Tests requiring a different fixture will be in a different class.

By convention, the name of the method begins with “test”. Tools can look for this
pattern to automatically create suites of tests given a class. The remainder of the
name of the method should suggest to a future clueless reader why this test was
written. JUnit, for example has a test called “testAssertPosInfinityNotEqualsNegIn-
finity”. I can’t remember writing this test, but from the name I assume that at some
point JUnit’s assertion code for floating point numbers didn’t distinguish between
positive and negative infinity. From the test I can quickly find the code in JUnit that
handles floating point comparison and see how we handled it (it’s kind of ugly—
there’s a special conditional to handle infinity.)

Test methods should be easy to read, pretty much straightline code. If a test method
is getting long and complicated, you need to play “Baby Steps”. The goal of the
game is to write the smallest test method that represents real progress towards your
end goal. Three lines appears to be about the minimum, without deliberate obfusca-
tion (and remember, you are writing these tests for people, not just the computer or
yourself.)

Patrick Logan contributed an idea I’m going to experiment with, also described by

McConnell2 and Caine and Gordon3

For some reason I’ve been working with "outlines" in practically everything I do
lately. Testing is no different. When I write tests, I first create a short outline of the
tests I want to write, for example...
/* Adding to tuple spaces. */
/* Taking from tuple spaces. */
/* Reading from tuple space. */

These are place holders until I add specific tests under each category. When I add
tests, I add another level of comments to the outline...
/* Adding to tuple spaces. */
/* Taking from tuple spaces. */
/** Taking a non-existant tuple. **/
/** Taking an existing tuple. **/
/** Taking multiple tuples. **/
/* Reading from tuple space. */

I usually only have two or three levels to the outline. I can’t think of when I had
more. But the outline essentially becomes documentation of the contract for the

2. Steve McConnell, Code Complete, chapter 4, Microsoft Press, 19??, ISBN >???.

3. S. H. Caine and E. K. Gordon, “PDL: A Tool for Software Design,” AFIPS Proceedings
of the 1975 National Computer Conference.
167

xUnit Patterns

168
class being tested. The examples here are abbreviated , but they would be more
specific in a contract-like language. (I don’t use any kind of add-on to Java for
Eiffel-like automation.)

Immediately under the lowest level of the outline is the test case code.

Exception Test

How do you test for expected exceptions? Catch expected exceptions and ignore
them, failing only if the exception isn’t thrown.

Let’s say we’re writing some code to look up a value. If the value isn’t found, we
want to throw an exception. Testing the lookup is easy enough.

public void testRate() {
exchange.addRate("USD", "GBP", 2);
int rate= exchange.findRate(“USD”, “GBP”);
assertEquals(2, rate);

}

Testing the exception may not be so obvious. Here’s how we do it:

public void testMissingRate() {
try {

exchange.findRate("USD", “GBP");
fail();

} catch (IllegalArgumentException expected) {
}

}

If findRate() doesn’t throw an exception, we will call fail(), an xUnit method which
reports that the test failed. Notice that we are careful only to catch the particular
exception we expect, so if the wrong kind of exception is thrown, we will also be
notified (including assertion failures.)

AllTests

How do you run all tests together? Make a suite of all the suites, one for each pack-
age and one aggregating the package tests for the whole application.

Suppose you add a TestCase subclass to a package and you add a test method to
that class. The next time all the tests run that test method should run, too (there’s

that test-driven stuff—the preceding is the outline for a test that I would probably
just go and implement if I wasn’t busy writing a book.) Because this isn’t supported
in most xUnit implementations or IDEs, each package should declare a class AllT-
ests that implements a static method suite() that returns a TestSuite. Here is AllT-
ests for the Money example:

public class AllTests {
public static void main(String[] args) {

junit.swingui.TestRunner.run(AllTests.class);
}

public static Test suite() {
TestSuite result= new TestSuite("TFD tests");
result.addTestSuite(MoneyTest.class);
result.addTestSuite(ExchangeTest.class);
result.addTestSuite(IdentityRateTest.class);
return result;

}
}

You can also give AllTests a main() method so the class can be run directly from
the IDE or a command line.

Further Study

The official site for JUnit is www.junit.org. There is also an active mailing list at
http://groups.yahoo.com/group/junit.

You can find a complete list of xUnit implementations at www.xprogram-
ming.com/software.htm (38 languages at the time I’m writing).
169

xUnit Patterns

170

CHAPTER 33 Design Patterns
One of the primary insights of patterns1 is that although it may seem like we solve
completely different problems all the time, most of the problems we solve are gen-
erated by the tools we use, not by the external problem at hand. Because of this, we
can expect to find (and actually do find) common problems with common solutions
even in the midst of an incredible diversity of external problem solving contexts.

Applying objects to organizing computation is one of the best examples of common
internally generated sub-problems being solved in common, predictable ways. The

enormous success of design patterns2 is a testimonial to the commonality seen by
object programmers. The success of the design patterns book, however, has stifled
any diversity in expressing these patterns.

The design patterns book seems to have a subtle bias towards design as a phase. It
certainly makes no nod towards refactoring as a design activity. Design in TDD
requires a slightly different look at design patterns.

1. Notes on the Synthesis of Form, Christopher Alexander, Harvard University Press, 1970,
ISBN: 0674627512

2. Design Patterns: Elements of Reusable Object Oriented Software, Dr. Erich
Gamma, et. al, Addison-Wesley, 199?, ISBN: ???
171

Design Patterns

172
The design patterns covered here are not intended to be comprehensive. They are
just enough design to get us through the examples. Here they are in summary:

• Command—represent the invocation of a computation as an object, not just a
message

• Value Object—avoid aliasing problems by making objects whose values never
change once created

• Null Object—represent the base case of a computation by an object

• Template Method—represent invariant sequences of computation with an
abstract method intended to be specialized through inheritance

• Pluggable Object—represent variation by invoking another object with two or
more implementations

• Pluggable Selector—avoid gratuitous subclasses by dynamically invoking dif-
ferent methods for different instances

• Factory Method—create an object by calling a method instead of a constructor.

• Composite—represent the composition of the behavior of a list of objects with
an object

• Collecting Parameter—pass around a parameter to be used to aggregate the
results of computation in many different objects

• Imposter—introduce variation by introducing a new implementation of existing
protocol

The design patterns cluster based on where they are used in TDD:

Pattern Test Writing Refactoring

Command X

Value Object X

Null Object X

Template Method X

Pluggable Object X

Pluggable Selector X

Factory Method X X

Command

What do you do when you need the invocation of a computation to be more compli-
cated than a simple method call? Make an object for the computation and invoke it.

Sending messages is wonderful. Programming languages make sending messages
syntactically easy. Programming environments make manipulating messages easy
(e.g. refactorings to automatically rename a message). However, sometimes just
sending a message isn’t enough.

For example, suppose you want to log the fact that a message got sent. We could
add language features (wrapper methods) to do this, but logging is rare enough, and
the value of simple languages is high enough, that we’d rather not do that. Or sup-
pose we want to invoke a computation, but later. We could start a thread, immedi-
ately suspend it, and re-start it later, but then we’d have all the joys of concurrency
to deal with.

Complicated invocations of computation require expensive mechanisms. However,
most of the time we don’t need all the complexity, and we’d rather not pay the cost.
When we need invocation to be just a little more concrete and manipulable than a
message, objects give us the answer. Make an object representing the invocation.
Seed it with all the parameters the computation will need. When we’re ready to
invoke it, use generic protocol, like “run()”.

The Java interface Runnable is an excellent example of this.

Runnable

interface Runnable
public abstract void run();

In the implementation of run(), you can do anything you’d like. Unfortunately, Java
has no syntactically lightweight way to create and invoke Runnables, so they aren’t
used as much as the equivalent—blocks or lambda in Smalltalk/Ruby or LISP—in
other languages.

Composite X X

Collecting Parameter X X

Imposter X X
173

Design Patterns

174
Value Object

How do you design objects that will be widely shared, but for whom identity is
unimportant? Set their state when they are created and never change it. Operations
on the object always return a new object.

Objects are wonderful. I can say that here, can’t I? Objects are a great way to orga-
nize logic for later understanding and growth. However, there is one little problem
(okay, more than one, but this one will do for now.)

Suppose I (an object) have a Rectangle. I compute some value based on the Rectan-
gle, like its area. Later, someone politely asks me for my Rectangle, and I, not
wanting to appear uncooperative, give it to them. Moments later, lo and behold, the
Rectangle has been changed behind my back. The area I computed earlier is out of
date, and there is no way for me to know.

This is the classic aliasing problem. If two objects share a reference to a third, if one
object changes the referred object, the other object better not rely on the state of the
shared object.

There are several ways out of the aliasing problem. One solution is never to give
out the objects that you rely on, but instead to always make copies. This can get
expensive in time and space, and ignores those times when you want to share
changes to a shared object. Another solution is Observer, where you explicit regis-
ter with objects on which you rely and expect to be notified when they change.
Observer can make control flows difficult to follow, and the logic for setting up and
removing the dependencies gets ugly.

Another solution is to treat the object as less than an object. Objects have state that
change over time. We can, if we choose, eliminate the “that change over time”. If I
have an object and I know it won’t change, I can pass around references to it all I
want, knowing that aliasing won’t be a problem. There can be no hidden changes to
a shared object if there are no changes.

I remember puzzling over Integers when I was first learning Smalltalk. If I change
bit 2 to a 1, why don’t all 2’s become 6’s?

a := 2.
b := a.
a := a bitAt: 2 put: 1.
a => 6

b => 2

Because Integers are really values masquerading as objects. In Smalltalk this is lit-
erally true of small integers, and simulated in the case of integers that don’t fit in a
single machine word. When I set that bit, what I get back is a new object with the
bit set, not the old one with the bit changed.

When implementing a Value Object, every operation has to return a fresh object,
leaving the original unchanged. Users have to be aware they are using a Value
Object and store the result (as in the example above.) All of these object allocations
can create performance problems, which should be handled like all performance
problems, when you have realistic data sets, realistic usage patterns, profiling data,
and complaints about performance.

I have a tendency to use Value Object whenever I have a situation that looks like
algebra—geometric shapes being intersected and unioned, unit values where units
are carried around with a number, symbolic arithmetic. Any time Value Object
makes the least sense I try it, because it makes reading and debugging so much eas-
ier.

All Value Objects have to implement equality (and in many languages by implica-
tion they have to implement hashing.) If I have this Contract and that Contract and
they aren’t the same object, then they are different, not equal. However, if I have
this five francs and that five francs, it doesn’t matter if they are the same five
francs, five francs are five francs and they should be equal.

Null Object

How do you represent special cases using objects? Create an object representing the
special case. Give it the same protocol as the regular objects.

java.io.File

public boolean setReadOnly() {
SecurityManager security = System.getSecurityManager();
if (security != null) {

security.checkWrite(path);
}
return fs.setReadOnly(this);

}

175

Design Patterns

176
There are 18 places where the same “security != null” check takes place in
java.io.File. While I appreciate their diligence in making files safe for the world,
I’m also a bit nervous. Are they careful to always check for a null as the result of
getSecurityManager()?

The alternative is to create a new class, LaxSecurity, which doesn’t throw excep-
tions ever.

java.io.LaxSecurity

public void checkWrite(String path) {
}

If someone asks for a SecurityManager and there isn’t one available, we send back
a LaxSecurity instead:

java.lang.SecurityManager

public static SecurityManager getSecurityManager() {
return security != null ? security : new LaxSecurity();

}

Now we don’t have to worry about someone forgetting to check for null. The origi-
nal code cleans up considerably:

java.io.File

public boolean setReadOnly() {
SecurityManager security = System.getSecurityManager();
security.checkWrite(path);
return fs.setReadOnly(this);

}

Erich Gamma and I once got in an argument at an OOPSLA tutorial about whether
a Null Object was appropriate somewhere in JHotDraw. I was ahead on points
when he calcuated the cost of introducing the Null Object as 10 lines of code, for
which we would get to eliminate 1 conditional. I hate those late round TKOs. (We
also got extremely bad marks from the audience for not being organized. Appar-
ently they weren’t aware that having productive design discussions is a difficult but
learnable skill.)

Template Method

How do you represent the invariant sequence of a computation while providing for
future refinement? Write a method that is implemented entirely in terms of other
methods.

Programming is full of classic sequences:

• Input/process/output

• Send message/receive reply

• Read command/return result

We would like to be able to clearly communicate the universality of these
sequences, while at the same time providing for variation in the implementation of
the steps.

In inheritance, object languages provide a simple, if limited, mechanism for com-
municating universal sequences. A superclass can contain a method written entirely
in terms of other methods, and subclasses can implement those methods in different
ways. For example, JUnit implements the basic sequence of running a test as

TestCase

public void runBare() throws Throwable {
setUp();
try {

runTest();
}
finally {

tearDown();
}

}

Subclasses can implement setUp(), runTest(), and tearDown() however they want.

One question when writing a Template Method is whether to write a default imple-
mentation of the sub-methods. In TestCase.runBare(), all three sub-methods have
default implementations:

• setUp() and tearDown() are no-ops

• runTest() dynamically finds and invokes a testing method based on the name of
the test case
177

Design Patterns

178
If the computation makes no sense without a sub-step being filled in, you should
note this in whatever way your programming language provides:

• Java—declare the sub-method abstract

• Smalltalk—implement the method by throwing a SubclassResponsibility error

Template methods are best found through experience instead of designed that way
from the beginning. Whenver I say to myself, “Ah, this is the sequence and here are
the details,” I always find myself inlining the detail methods later and re-extracting
the truly variant parts.

When you find two variants of a sequence in two subclasses, you need to gradually
move them closer together. Once you’ve extracted the parts that are different to
other methods, what you are left with is the template method. Then you can move
the template method to the superclass and eliminate the duplication.

Pluggable Object

The simplest way to express variation is with explicit conditionals:

if (circle) then {
…circley stuff…
} else {
…non circley stuff
}

You will quickly find that such explicit decision making begins to spread. If you
represent the distinction between circles and non-circles as an explicit conditional
in one place, the conditional is likely to spread.

Since the second imperative of TDD is the elimination of duplication, you must nip
the plague of explicit conditionals in the bud. The second time you see a condi-
tional, it is time to pull out the most basic of object design moves, the pluggable
object.

The pluggable objects revealed by simply eliminating duplication are sometimes
counter-intuitive. Erich Gamma and I found this, one of my favorite examples of an
unpredictable pluggable object. When writing a graphics editor, selection is actu-
ally a bit complicated. If you’re over a figure when the button is pressed, then sub-
sequent moves of the mouse move that figure and releasing the button leaves the
figure selected. If you’re not over a figure, then you are selecting a group of figures,

and subsequent moves of the mouse typically resize a rectangle used to select sev-
eral figures. Releasing the button causes the figures inside the rectangle to be
selected. The initial code looks something like this:

SelectionTool

Figure selected;
public void mouseDown() {

selected= findFigure();
if (selected != null)

select(selected);
}
public void mouseMove() {

if (selected != null)
move(selected);

else
moveSelectionRectangle();

}
public void mouseUp() {

if (selected == null)
selectAll();

}

There’s that ugly duplicated conditional (I told you they spread like a disease). The
answer in this case is to create a Pluggable Object, a SelectionMode, with two
implementations, SingleSelection and MultipleSelection.

SelectionTool

SelectionMode mode;
public void mouseDown() {

selected= findFigure();
if (selected != null)

mode= SingleSelection(selected);
else

mode= MultipleSelection();
}
public void mouseMove() {

mode.mouseMove();
}
public void mouseUp() {

mode.mouseUp();
}

179

Design Patterns

180
In languages with explicit interfaces, you will have to implement an interface along
with the two (or more) pluggable objects.

Pluggable Selector3

How do you invoke different behavior for different instances? Store the name of a
method, and dynamically invoke the method.

What do you do when you have ten subclasses of a class, each implementing only
one method? Subclassing is a heavyweight mechanism for capturing such a small
amount of variation.

abstract class Report {
abstract void print();

}

class HTMLReport extends Report {
void print() { ...
}

}

class XMLReport extends Report {
void print() { ...
}

}

One alternative is to have a single class with a switch statement. Depending on the
value of a field, you invoke different methods. However, the name of the method
appears in three places:

• The creation of the instance

• The switch statement

• The method itself
abstract class Report {

String printMessage;

3. For more details see K. Beck, The Smalltalk Best Practice Patterns, p. 70-73, Prentice-
Hall, 1997, ISBN 013476904X. It’s bad form to reference your own works, but as noted
philosopher Phyllis Diller once said, “Of course I laugh at my own jokes. You can’t trust
strangers.”

Report(String printMessage) {
this.printMessage= printMessage;

}

void print() {
switch (printMessage) {

case "printHTML" :
printHTML();
break;

case "printXML" :
printXML():
break;

}
};

void printHTML() {
}

void printXML() {
}

}

Every time you add a new kind of printing you have to be sure to add the printing
method and change the switch statement.

The Pluggable Selector solution is to dynamically invoke the method using reflec-
tion:

void print() {
Method runMethod= getClass().getMethod(printMessage, null);
runMethod.invoke(this, new Class[0]);

}

Now there is still an ugly dependency between creators of Reports and the names of
the print methods, but at least you don’t have the case statement in there, too.

Pluggable Selector can definitely be overused. The biggest problem with it is trac-
ing code to see whether a method is invoked. Only use Pluggable Selector when
you are cleaning up a fairly straightforward situation in which a bunch of sub-
classes each have only one method.
181

Design Patterns

182
Factory Method

How do you create an object when you want flexibility in creating new object? Cre-
ate the object in a method instead of using a constructor.

Constructors are expressive. You can see that you are definitely creating an object
when you use one. However, constructors, particularly in Java, lack expressiveness
and flexibility.

One axis of flexibility that we wanted in our Money example was to be able to
return an object of a different class when we created an object. We had tests like:

public void testMultiplication() {
Dollar five= new Dollar(5);
assertEquals(new Dollar(10), five.times(2));
assertEquals(new Dollar(15), five.times(3));

}

We wanted to introduce the Money class, but we couldn’t as long as we were
locked into creating an instance of Dollar. By introducing a level of indirection,
through a method, we gained the flexibility of returning an instance of a different
class without changing the test.

public void testMultiplication() {
Dollar five = Money.dollar(5);
assertEquals(new Dollar(10), five.times(2));
assertEquals(new Dollar(15), five.times(3));

}

Money

static Dollar dollar(int amount) {
return new Dollar(amount);

}

This method is called a Factory Method, because it makes objects.

The downside of using Factory Method is precisely its indirection. You have to
remember that the method is really creating an object, even though it doesn’t look
like a constructor. Use Factory Method only when you need the flexibility it cre-
ates. Otherwise, constructors work just fine for creating objects.

Imposter

How do you introduce a new variation into a computation? Introduce a new object
with the same protocol as an existing object but a different implementation.

Introducing variation in a procedural program involves adding conditional logic.
As we saw in Pluggable Object, such logic tends to proliferate, and a healthy dose
of polymorphic messages are required to cure the duplication.

Suppose you have a structure in place already. There’s an object already. Now you
need the system to do something different. If there’s an obvious place to insert an if
statement and you’re not duplication logic from elsewhere, go ahead. Often how-
ever, the variation would obviously require changes to several methods.

This moment of decision comes up in two ways in TDD. Sometimes you are writ-
ing a test case and you need to represent a new scenario. None of the existing
objects expresses what you want to express. Suppose we are testing a graphics edi-
tor and we already have rectangles drawing correctly:

testRectangle() {
Drawing d= new Drawing();
d.addFigure(new RectangleFigure(0, 10, 50, 100));
RecordingMedium brush= new RecordingMedium();
d.display(brush);
assertEquals("rectangle 0 10 50 100\n", brush.log());

}

Now we want to display ovals. In this case, the Imposter is easy to spot—replace a
RectangleFigure with an OvalFigure.

testOval() {
Drawing d= new Drawing();
d.addFigure(new OvalFigure(0, 10, 50, 100));
RecordingMedium brush= new RecordingMedium();
d.display(brush);
assertEquals("oval 0 10 50 100\n", brush.log());

}

Generally, spotting the possibility of an Imposter the first time requires insight.
Ward’s insight that a vector of Moneys could act like a Money is just such a
moment. You thought they were different, and now you see that you can see them
as being the same.
183

Design Patterns

184
Following are two examples of Imposters that come up during refactoring:

• Null Object—you can treat the absence of data the same as the presence of data

• Composite—you can treat a collection of objects the same as a single object

Finding Imposters during refactoring is driven by eliminating duplication, just as
all refactoring is driven by eliminating duplication.

Composite

How do you implement an object whose behavior is the composition of the behav-
ior of a list of other objects? Make it an Imposter for the component objects.

My favorite example is also an example of the contradiction of composites:
Account and Transaction. Transactions store an increment of value (they are really
a lot more complex and interesting, but for now…):

Transaction

Transaction(Money value) {
this.value= value;

}

Accounts compute their balance by summing the values of their Transactions:

Account

Transaction transactions[];
Money balance() {

Money sum= Money.zero();
for (int i= 0; i < transactions.length; i++)

sum= sum.plus(transactions[i].value);
return sum;

}

Seems simple enough:

• Transactions have a value

• Accounts have a balance

Then comes the interesting part. A customer has a bunch of Accounts, and would
like to see an overall balance. The obvious way to implement this is as a new class,

OverallAccount, that sums the balances of a list of Accounts. Duplication! Duplica-
tion!

What if Account and Balance both implemented the same interface, call it “Hold-
ing” because I can’t think of anything better at the moment?

Holding

interface Holding
Money balance();

Transactions can implement balance() by returning their value:

Transaction

Money balance() {
return value;

}

Now Accounts can be composed of Holdings, not Transactions:

Account

Holding holdings[];
Money balance() {

Money sum= Money.zero();
for (int i= 0; i < holdings.length; i++)

sum= sum.plus(holdings[i].balance());
return sum;

}

Now our problem with OverallAccounts disappears. An OverallAccount is just an
Account containing Accounts.

The smell of Composite is illustrated by the above. Transactions don’t have bal-
ances, not in the real world. Applying Composite is a programmer’s trick, not gen-
erally appreciated by the rest of the world. However, the benefits to program design
are enormous, so the conceptual disconnect is often worth it. Folders containing
Folders, TestSuites containing TestSuites, Drawings containing Drawings, none of
these translate well from the world, but they all make the code so much simpler.

I had to play with Composite for a long time before I found where to use it and
where not to use it. As will be obvious from the discussion above, I’m still not able
to articulate how to guess when a collection of objects is just a collection of objects
185

Design Patterns

186
and when you really have a Composite. The good news is, since you’re getting
good at refactoring, the moment the duplication appears, you can introduce Com-
posite and watch program complexity disappear.

Collecting Parameter

How do you collect the results of an operation that is spread over several objects?
Add a parameter to the operation in which the results will be collected.

A simple example is the java.io.Externalizable interface. The writeExternal method
writes an object and all the objects it references. Since the objects all have to coop-
erate loosely to get written out, the method is passed a parameter, an ObjectOutput,
as the collecting parameter:

java.io.Externalizable

public interface Externalizable extends java.io.Serializable {
void writeExternal(ObjectOutput out) throws IOException;

}

Adding a Collecting Parameter is a common consequence of Composite. In devel-
oping JUnit, we didn’t need the TestResult to collate the results of several tests
until we had several tests.

As the sophistication of expected results grows, you may find the need to introduce
a Collecting Parameter. For example, suppose we are printing Expressions. If all
we want is a flat string, concatenation is sufficient:

testSumPrinting() {
Sum sum= new Sum(Money.dollar(5), Money.franc(7));
assertEquals("5 USD + 7 CHF", sum.toString());

}

String toString() {
return augend + " + " + addend;

}

If we want the indented tree form of the expression however:

testSumPrinting() {
Sum sum= new Sum(Money.dollar(5), Money.franc(7));
assertEquals("+\n\t5 USD\n\t7 CHF", sum.toString());

}

We will have to introduce a Collecting Parameter, something like this:

String toString() {
IndentingStream writer= new IndentingStream();
toString(writer);
return writer.contents();

}

void toString(IndentingWriter writer) {
writer.println("+");
writer.indent();
augend.toString(writer);
writer.println();
addend.toString(writer);
writer.exdent();

}

Singleton

How do you provide global variables in languages without global variables? Don’t.
Your progams will thank you for taking the time to think about design instead.

Further Study

DP

POSA

Nature of Order

GRudin, Grace of Great Things

D’Arcy Thompson
187

Design Patterns

188

CHAPTER 34 Refactoring
There is a brief description of how to accomplish each refactoring in small steps.
More importantly, each refactoring discusses why you might want to use it.

In TDD we use “refactoring” in an interesting way. Usually, a refactoring cannot
change the semantics of the program under any circumstances. In TDD, the circum-
stances we care about are the tests that are already passing. So, for example, we can
replace constants with variables in TDD and call this operation, in good conscience,
a refactoring, because it doesn’t change the set of tests that pass. The only circum-
stance under which semantics are preserved may actually be our one test case. Any
other test case that was passing would fail. However, we don’t have those tests yet,
so we don’t worry about them.

This “observational equivalence” places a burden on you to have enough tests so as
far as you know, a refactoring with respect to the tests is the same as a refactoring
with respect to all possible tests, at least by the time you’re done. It’s no excuse to
say, “I knew there was a problem, but the tests all passed so I checked the code in.”
Write more tests.

Reconcile Differences

How do you unify two similar looking pieces of code? Gradually bring them closer.
Unify them only when they are absolutely identical.
189

Refactoring

190
Refactoring can be a nerve-wracking experience. The easy ones are obvious. If I
extract a method, as long as I do it mechanically correctly, there is very little chance
of changing the system’s behavior. Some refactorings push you to examine the con-
trol flows and data values carefully. A long chain of reasoning leads you to believe
that the change you are about to make won’t change any answers. Those are the
refactorings that enhance your hairline.

Such a leap of faith refactoring is exactly what we’re trying to avoid with our strat-
egy of small steps and concrete feedback. While you can’t always avoid leapy
refactorings, you can reduce their incidence.

This refactoring occurs at all levels of scale:

• Two loops structures are similar. By making them identical, you can merge
them.

• Two branches of a conditional are similar. By making the identical, you can
eliminate the conditional.

• Two methods are similar. By making them identical, you can eliminate one.

• Two classes are similar. By making them identical, you can eliminate one.

Sometimes you need to approach reconciling differences backwards—think about
how the last step of the change could be trivial, then work backwards. For example,
if you want to remove several subclasses, the trivial last step is if a subclass con-
tains nothing. Then the subclass can be replaced by the superclass without changing
the behavior of the system. To empty out this subclass, this method needs to be
made identical to the one in the superclass. One by one, empty out the subclasses
and, when they are empty, replace references to them by references to the super-
class.

Isolate Change

How do you change one part of a multi-part method or object? First, isolate the part
that has to change.

The picture that comes to my mind is surgery, where all of the patient except the
part to be operated on is draped. The draping leaves the surgeon with only a fixed
set of variables. Now, we could have long arguments over whether this abstraction
of a person to a lower left quadrant abdomen leads to good health care, but at the
moment of surgery, I’m kind of glad the surgeon can focus.

You may find that once you’ve isolated the change and then made the change, that
the result is so trivial that you can undo the isolation. If we found that really all we
needed was to return the instance variable in findRate(), we should consider inlin-
ing findRate() everywhere it is used and deleting it. Don’t make these changes
automatically, however. Balance the cost of an additional method with the value of
having an additional concept explicit in the code.

Some possible ways to Isolate Change are Extract Method (the most common),
Extract Object, and Method Object.

Migrate Data

How do you move from one representation? Temporarily duplicate the data.

How:

Here is the internal-to-external version, where you change the representation inter-
nally and then change the externally visible interface:

• Add an instance variable in the new format

• Set the new format variable everywhere you set the old format

• Use the new format variable everywhere you use the old format

• Delete the old format

• Change the external interface to reflect the new format

Sometimes, though, you want to change the API first. Then you should:

• Add a parameter in the new format

• Translate from the new format parameter to the old format internal representa-
tion

• Delete the old format parameter

• Replace uses of the old format with the new format

• Delete the old format

Why:

One to Many creates a data migration problem every time. Suppose we wanted to
implement TestSuite using One to Many. We would start with:
191

Refactoring

192
def testSuite(self):
suite= TestSuite()
suite.add(WasRun("testMethod"))
suite.run(self.result)
assert("1 run, 0 failed" == self.result.summary())

Which is implemented (in the “One” part of One to Many) by:

class TestSuite:
def add(self, test):

self.test= test
def run(self, result):

self.test.run(result)

Now we begin duplicating data. First we initialize the collection of tests:

TestSuite

def __init__(self):
self.tests= []

Everywhere “test” is set, we add to the collection, too:

TestSuite

def add(self, test):
self.test= test
self.tests.append(test)

Now we use the list of tests instead of the single test. For purposes of the current
test cases this is a refactoring (it preserves semantics) because there is only ever one
element in the collection.

TestSuite

def run(self, result):
for test in self.tests:

test.run(result)

We delete the now-unused instance variable “test”:

TestSuite

def add(self, test):
self.tests.append(test)

You can also use stepwise data migration when moving between equivalent formats
with different protocols, as in moving from Java’s Vector/Enumerator to Collec-
tion/Iterator.

Extract Method

How do you make a long, complicated method easier to read? Turn a small part of
it into a separate method and call the new method.

How

Extract Method is actually one of the more complicated atomic refactorings. I’ll
describe the typical case here. Fortunately, it is also the most commonly imple-
mented automatic refactoring, so you likely won’t have to do it by hand.

1. Find a region of the method that would make sense as its own method. Bodies of
loop, whole loops, and branches of conditionals are common candidates for extrac-
tion.

2. Make sure there are no assignments to temporary variables declared outside the
scope of the region to be extracted.

3. Copy the code from the old method to the new method. Compile it.

4. For each temporary variable or parameter of the original method used in the new
method, add a parameter to the new method.

5. Call the new method from the original method

Why

I use Extract Method when I’m trying to understand complicated code. “Here, this
bit here is doing something. What shall we call that?” After half an hour the code is
looking better, your partner realizes that really are there to help, and you under-
stand much better what is going on.

I use Extract Method to eliminate duplication when I see that two methods have
some parts the same and some parts different. I extract out the similar bits as meth-
ods (the Smalltalk Refactoring Browser even goes and checks to see if you are
extracting a method that is equivalent to one you already have, and offers to use the
existing method instead of creating a new one.)
193

Refactoring

194
Breaking methods into tiny bits can sometimes go too far. When I can no longer see
a way forward, I often use Inline Method (conveniently, the next refactoring) to get
all the code in one place so I can see what should be extracted anew.

Inline Method

How do you simplify control flows that have gotten to twisted or scattered?
Replace a method invocation with the method itself.

How

1. Copy the method.

2. Paste the method over the method invocation.

3. Replace all formal parameters with actual parameters. If you pass, for example,
reader.getNext() (an expression causing side effects), be careful to assign it to a
local variable.

Why

A reviewer complained about the sequence in section I where a Bank is asked to
reduce an Expression to a single Money.

public void testSimpleAddition() {
Money five= Money.dollar(5);
Expression sum= five.plus(five);
Bank bank= new Bank();
Money reduced= bank.reduce(sum, "USD");
assertEquals(Money.dollar(10), reduced);

}

“This is too complicated. Why don’t you just ask the Money to reduce itself?” How
do we experiment? Inline the implementation of Bank.reduce() and see what it
looks like.

public void testSimpleAddition() {
Money five= Money.dollar(5);
Expression sum= five.plus(five);
Bank bank= new Bank();
Money reduced= sum.reduce(bank, "USD");
assertEquals(Money.dollar(10), reduced);

}

You might like second version better or not. The point to note here is you can use
Inline Method to play around with the flow of control. When I’m refactoring, I have
a mental picture of the system with bits of logic and control flow sloshing around
between the objects. When I think I see something promising, I use the refactorings
to try it out and see the result.

In the heat of battle I’ll occassionally get caught up in my own cleverness (I’m not
going to say how often those occassions come.) When I do, Inline Method is a way
for me to reel myself back in. “I have this sending to that sending to that... Whoa,
Nelly. What’s going on here?” I inline a few layers of abstraction, see what’s really
going on, and then I can re-abstract the code according to its actual needs, not my
preconceptions.

Extract Interface

How do you introduce a second implementation of operations in Java? Create an
interface containing the shared operations.

How:

1. Declare an interface. Sometimes the name of the existing class should be the
name of the interface, in which case you should first rename the class.

2. Have the existing class implement the interface.

3. Add the necessary methods to the interface, expanding the visibility of the meth-
ods in the class if necessary.

4. Change type declarations from the class to the interface where possible.

Why:

Sometimes when you need to extract an interface, you are genuinely moving from
the first implementation to the second. You have a Rectangle and you want to add
an Oval, so you create a Shape interface. Finding names for the interfaces in this
case is generally easy, although sometimes you have to struggle to find the right
metaphor.
195

Refactoring

196
Sometimes you are introducing a Crash Test Dummy or other Mock Object when
you need to extract an interface. Naming is generally tougher in this case, because
you still only have one real example. These are the times I’m most tempted to cop
out and name the interface IFile and leave the class named File. I’ve schooled
myself to stop a moment and see if I don’t understand something deeper about what
is going on. Perhaps the interface should be called File and the class DiskFile,
because the class assumes that the bits are on a disk.

Move Method

How do you move a method to where it belongs? Add it to the class where it
belongs, then invoke it.

How:

1. Copy the method.

2. Paste the method, suitably named, into the target class. Compile it.

3. If the original object is referenced in the method, add a parameter to pass the
original object. If variables of the original object are referenced, pass them as
parameters. If variables of the original object are set, you should like give up.

4. Replace the body of the original method with an invocation of the new method.

How:

This is one of my favorite consulting refactorings, because it is so good at uncover-
ing unwarranted preconceptions. Calculating areas is the responsibility of the
Shape:

Shape

...
int width= bounds.right() - bounds.left();
int height= bounds.bottom() - bounds.top();
int area= width * height;
...

Any time I see more than one message sent to another object in a method, I get sus-
picious. In this case, I see that bounds (a Rectangle) is being sent four messages.
Time to move this part of the method:

Rectangle

public int area() {
int width= this.right() - this.left();
int height= this.bottom() - this.top();
return width * height;

}

Shape

...
int area= bounds.area();
...

The three great properties of Move Method are:

• It’s easy to see the need for it without deep understanding of the meaning of the
logic. You see two or more messages to a different object and away you go.

• The mechanics are quick and safe.

• The results are often enlightening. “But Rectangles don’t do any calculation...
Oh, I see. That is better.”

Sometimes you will want to move only part of a method. You can first extract a
method, move the whole method, then inline the (now one line) method in the orig-
inal class. Or you can figure out the mechanics for doing it in one go.

Method Object

How do you represent a complicated method that requires several parameters and
local variables? Make an object out of the method.

How:

• Create an object with the same parameters as the method.

• Make the local variables also instance variables of the object.

• Create one method called "run()", whose body is the same as the body of the
original method.

• In the original method, create a new object and invoke run().

Why:
197

Refactoring

198
Method Objects are useful in preparation for adding a whole new kind of logic to
the system. For example, you might have several methods involved in computing
the cash flow from component cash flows. When you want to start computing the
net present value of the cash flows, you can first create a Method Object out of the
first style of computation. Then you can write the new style of computation with its
own, smaller-scale, tests. Then plugging in the new style will be a single step.

Method Objects are also good for simplifying code that doesn’t yield to Extract
Method. Sometimes you’ll find a block of code that has a bunch of temporary vari-
ables and parameters, and every time you try to extract a piece of it you have to
carry along five or six temps and parameters. The resulting extracted method
doesn’t look any better than the original code, because the method signature is so
long. Creating a Method Object gives you a new namespace in which you can
extract methods without having to pass anything.

Add Parameter

How do you add a parameter to a method?

How:

• If the method is in an interface, add the parameter to the interface first

• Use the compiler errors to tell you what other code you need to change

Why:

Adding a parameter is often an extension step. You got the first test case running
without needing the parameter, but in this new circumstance you have to take more
information into account in order to compute correctly.

Adding a parameter can also be part of migrating from one data representation to
another. First you add the parameter, then you delete all uses of the old parameter,
then you delete the old parameter.

Method Parameter to Constructor Parameter

How do you move a parameter from a method or methods to the constructor?

How:

• Add a parameter to the constructor

• Add an instance variable with the same name as the parameter

• Set the variable in the constructor

• One by one, convert references to “parameter” to “this.parameter”

• When no more references exist to the parameter, delete the parameter from the
method and all caller

• Remove the now-superfluous “this.” from references

• Rename the variable correctly

Why:

If you pass the same parameter to several different methods in the same object, you
can simplify the API by passing the parameter once (eliminating duplication). You
can run this refactoring in reverse if you find that an instance variable is only used
in one method.

Further Study

Fowler, Refactoring

Alexander, Timeless Way of Building
199

Refactoring

200

CHAPTER 35 Mastering TDD
I hope to raise questions here for you to ponder as you integrate TDD into your own
practice. Some of the questions are small, and some are large. Sometimes the
answers are here, or at least hinted at here, and sometimes the questions are left for
you to explore.

How large should your steps be?

There are really two questions lurking here:

• How much ground should each test cover?

• How many intermediate stages should you go through as you refactor?

You could write the tests so they each encouraged the addition of a single line of
logic and a handful of refactorings. You could write the tests so they each encour-
aged the addition of hundreds of lines of logic and hours of refactoring. Which
should you do?

Part of the answer is that you should be able to do either. The tendency of TDDers
over time is clear, though—smaller steps. However, folks are experimenting with
driving development from application-level tests, either alone or in conjunction
with the programmer-level tests we’ve been writing.
201

Mastering TDD

202
At first when you refactor, you should be prepared to take lots of little tiny steps.
Manual refactoring is prone to error, and the more errors you make and only catch
later, the less likely you are to refactor. Once you’ve done a refactoring 20 times by
hand in little tiny steps, experiment with leaving out some of the steps.

Automated refactoring accelerates refactoring enormously. What would have taken
you 20 manual steps now becomes a single menu item. An order of magnitude
change in quantity generally constitute a change in quality, and this is true of auto-
mated refactoring. When you know you are supported by an excellent tool, you
become much more aggressive in your refactorings, trying many more experiments
to see how the code wants to be structured.

The Refactoring Browser for Smalltalk is as I write still the best refactoring tool
available. Java refactoring support is appearing in many Java IDEs, and refactoring
support is sure to spread quickly to other languages and environments.

What don’t you have to test?

The simple answer, supplied by Phlip is, “write tests until fear is transformed into
boredom.” This is a feedback loop, though, and requires that you find the answer
yourself. Since you came to this book for answers, not questions (in which case
you’re already reading the wrong section, but enough of the self-referential literary
recursion stuff…), try this list. You should test:

• Conditionals

• Loops

• Operations

• Polymorphism

But only those that you write. Unless you have reason to distrust it, don’t test code
from others. Sometimes, the precise specification of (by which I mean “bugs in”)
external code requires you to write more logic of your own. See above for whether
you have to test this. Sometimes, just to be extra careful, I will document the pres-
ence of, um, unusual behavior in external code with a test that will fail if the bug is
ever fixed, er, the behavior is ever refined.

How do you know if you have good tests?

The tests are a canary in a coal mine revealing by their distress the presence of evil
design vapors. Here are some attributes of tests suggesting a design in trouble:

• Long setup code—If you have to spend a hundred lines creating the objects for
one simple assertion, something is wrong. Your objects are too big and need to
be split.

• Setup duplication—If you can’t easily find a common place for common setup
code, there are too many objects too tightly intertwingled.

• Long running tests—TDD tests that run a long time won’t be run often, and
often haven’t been run for a while, and probably don’t work. Worse than this,
though, they suggest that testing the bits and pieces of the application is hard.
Difficulty testing bits and pieces is a design problem, and needs to be addressed

with design. (The equivalent of 9.8 m/s2 is the ten minute test suite. Suites that
take longer than 10 minutes inevitably get trimmed, or the application tuned up,
so the suite takes 10 minutes again.)

• Fragile tests—Tests that break unexpectedly suggest that one part of the appli-
cation is surprisingly effecting another part. You need to design until the effect
at a distance is eliminated, either by breaking the connection or by bringing the
two parts together.

How does TDD lead to frameworks?

Paradox: by not considering the future of your code you make your code much
more likely to be able to adapt in the future.

I learned exactly the opposite from books. “Code for today, design for tomorrow.”
TDD appears to stand this advice on its head. “Code for tomorrow, design for
today.”

Here’s what happens in practice.

• The first feature goes in. It is implemented simply and straightforwardly, so it is
done quickly and with few defects.

• The second feature, a variation on the first, goes in. The duplication between the
two features is put in one place, while the differences tend to go in different
places (different methods or even different classes).
203

Mastering TDD

204
• The third feature, a variation on the first two, goes in. The common logic is
likely to be reusable as is, perhaps with a few tweaks. The unique logic tends to
have an obvious home, either in a different method or different class.

The Open/Closed Principle (objects should be open for use and closed to further
modification) is gradually satisfied, and for precisely those kinds of variation that
occur in practice. Test driving development leaves you with frameworks that are
good at expressing exactly the kind of variation that occurs, even though they might
not be good at expressing the kind of variation that doesn’t occur (or hasn’t
occurred yet.)

So, what happens when an unusual variation pops up three years later? The design
undergoes rapid evolution in exactly the necessary spots of accommodate the varia-
tion. The Open/Closed Principle is violated, just for a moment, but the violation is
not all that costly because you have all those tests to give you confidence you aren’t
breaking anything.

At the limit, where you introduce the variations very quickly, TDD is indistinguish-
able from designing ahead. I grew a reporting framework once over the course of a
few hours, and observers were absolutely certain it was a trick. I must have started
with the resulting framework in mind. No, sorry. I’ve just been test driving devel-
opment long enough that I can recover from most of my mistakes faster than you
can recognize I’ve made them.

How much feedback do you need?

How many tests should you write? Here’s a simple problem—given three integers
representing the length of the sides of a triangle, return:

• 1 if the triangle is equilateral

• 2 if the triangle is isoceles

• 3 if the triangle is scalene

and throw an exception if the triangle is not well formed.

Go ahead, try the problem (my Smalltalk solution is listed at the end of this ques-
tion).

I wrote 6 tests (kind of like Name That Tune, “I can code that problem in four
tests.” “Code that problem.”) Bob Binder, in his comprehensive book Testing

Object-Oriented Software, wrote 65 for the same problem. You’ll have to decide,
from experience and reflection, about how many tests you want to write.

I think about Mean Time Between Failure (MTBF) when I think about how many
tests to write. For example, Smalltalk integers act like integers, not like a 32-bit
counter, so it doesn’t make sense to test MAXINT. Well, there is a maximum size
for an integer, but it has to do with how much memory you have. Do I need to write
a test that fills up memory with extremely large integers? How will that affect the
MTBF of my program? If I’m never going to get anywhere close to that size of tri-
angle, my program is not measurably more robust with such a test than without it.

Whether a test makes sense to write depends on how carefully you measure MTBF.
If you are trying to get from an MTBF of 10 years to an MTBF of 100 years in your
pacemaker, tests for extremely unlikely conditions and combinations of conditions
make sense, unless you can demonstrate in some other way that the conditions can-
not arise.

TDD’s view of testing is pragmatic. In TDD, the tests are a means to an end, the
end being code in which we have great confidence. If our knowledge of the imple-
mentation gives us confidence even without a test, we will not write that test. Black
box testing, where we deliberately choose to ignore the implementation, has some
advantages. By ignoring the code, it demonstrates a different value system—the
tests are valuable alone. It’s an appropriate attitude to take in some circumstances.
However, it is different than TDD.

TriangleTest

testEquilateral
self assert: (self evaluate: 2 side: 2 side: 2) = 1

testIsoceles
self assert: (self evaluate: 1 side: 2 side: 2) = 2

testScalene
self assert: (self evaluate: 2 side: 3 side: 4) = 3

testIrrational
[self evaluate: 1 side: 2 side: 3]

on: Exception
do: [:ex | ^self].

self fail

testNegative
205

Mastering TDD

206
[self evaluate: -1 side: 2 side: 2]
on: Exception
do: [:ex | ^self].

self fail

testStrings
[self evaluate: ‘a’ side: ‘b’ side: ‘c’]

on: Exception
do: [:ex | ^self].

self fail

evaluate: aNumber1 side: aNumber2 side: aNumber3
| sides |
sides := SortedCollection

with: aNumber1
with: aNumber2
with: aNumber3.

sides first <= 0 ifTrue: [self fail].
(sides at: 1) + (sides at: 2) <= (sides at: 3) ifTrue: [self fail].
^sides asSet size

When should you delete tests?

More tests is better, but if two tests are redundant with respect to each other, should
you keep them both around?

The first criterion for your tests is confidence. Never delete a test if it reduces your
confidence in the behavior of the system.

The second criterion is communication. If you have two tests that exercise the same
path through the code, but they speak to different scenarios for a readers, leave
them alone.

That said, if you have two tests that are redundant with respect to confidence and
communication, delete the least useful of the two.

How does the programming language and environment influence
TDD?

Try TDD in Smalltalk with the Refactoring Browser. Try it in C++ with vi. How
does your experience differ?

In programming languages and environments where TDD cycles (test/compile/run/
refactor) are harder to come by, you will likely be tempted to take larger steps:

• Cover more ground with each test

• Refactor with fewer intermediate steps

Does this make you go faster or slower?

In programming languages and environments where TDD cycles are plentiful, you
will likely be tempted to try lots more experiments. Does this help you go faster or
reach better solutions, or would you be better off institutionalizing some kind of
time for pure reflection (reviews or literate programs)?

Can you test-drive enormous systems?

Does TDD scale to extremely large systems? What new tests would you have to
write? What new kinds of refactorings would you need?

The largest system I’ve been involved with that is totally test-driven is at LifeWare
(www.lifeware.ch). After four years and 40 person/years, the system contains about
250,000 lines of functional code and 250,000 lines of test code in Smalltalk. There
are 4,000 tests, executing in under 20 minutes. The full suite is run several times
each day. The amount of functionality in the system seems to have no bearing on
the effectiveness of TDD. By eliminating duplication you tend to create more
smaller objects, and those objects can be tested in isolation independent of the size
of the application.

Can you drive development with application-level tests?

The problem with driving development with small scale tests (I call them “unit
tests”, but they don’t match the accepted definition of unit tests very well) is that
you run the risk of implementing what you think a user wants, but having it turn out
to be not what they wanted at all. What if we wrote the tests at the level of the appli-
207

Mastering TDD

208
cation? Then the users (with help) could write tests themselves for what exactly
they wanted the system to do next.

There is a technical problem—fixturing. How can you write and run a test for a fea-
ture that doesn’t exist yet? There always seems to be some way out of this problem,
typically by introducing an interpreter which gracefully signals an error when it
comes across a test that it doesn’t know how to interpret yet.

There is also a social problem with application test driven development. Writing
tests is a new responsibility for users (by which I really mean a team that includes
users), and that responsibility comes at a new place in the development cycle,
namely before implementation begins. Organizations resist this kind of shift of
responsibility. It will require concerted effort (that is, the effort of many people on
the team working in concert) to get application tests written first.

TDD as described in this book is a technique that is entirely under your control.
You can pick it up and start using it today if you so choose. Mixing up the rhythm
of red/green/refactor, the technical issues of application fixturing, and the organiza-
tional change issues surrounding user-written tests is unlikely to be successful. The
One Step Test rule applies. Get red/green/refactor going in your own practice, then
spread the message.

Another aspected of ATDD is the length of the cycle between test and feedback. If
a customer wrote a test and ten days later it finally worked, you would be staring at
a red bar most of the time. I think I would want to still do programmer-level TDD
so:

• I got immediate green bars

• I simplified the internal design

How do you switch to TDD mid-stream?

You have a bunch of code which more or less works. You want to test drive your
new code. What do you do next?

There is a whole book (or books) to be written about switching to TDD when you
have lots of code. What follows is necessarily only a teaser.

The biggest problem is that code that isn’t written with tests in mind typically isn’t
very testable. The interfaces aren’t designed so it is easy for you to isolate a little
piece of logic, run it, and check its results.

“Fix it,” you say. Yes, well, but refactoring (without automated tools) is likely to
result in errors, errors that you won’t catch because you don’t have the tests. Chick-
ens and eggs. Catch-22. Mutually assured destruction. What do you do?

What you don’t do is go write tests for the whole thing and refactor the whole thing.
That would take months, months in which no new functionality would appear.
Spending money without making it is generally speaking not a sustainable process.

So first we have to decide to limit the scope of our changes. If we see parts of the
system that could be dramatically simplified, but that don’t demand change at the
moment, we will leave them alone. Shed a tear, perhaps, for the sins of the past, but
leave them alone.

Second, we have to break the deadlock between tests and refactoring. We can get
feedback other ways than with tests, like working very carefully and with a partner.
We can get feedback at a gross level, like system level tests that we know aren’t
adequate, but give us some confidence. With this feedback, we can make the areas
we have to change more accepting of change.

Over time, the parts of the system that change all the time will come to look test-
driven. Occassionally we will wander into an unlit back alley and get mugged for
our troubles, reminding us how slow things used to be. Then we will slow down,
break the deadlock, and get going again.

Who is TDD intended for?

Every programming practice encodes a value system, explicitly or implicitly. TDD
is no different. If you’re happy slamming some code together that more or less
works and never looking at the result again, TDD is not for you. TDD rests on a
charmingly naïve geekoid assumption that if you write better code, you’ll be more
successful. TDD helps you pay attention to the right issues at the right time so you
can make your designs cleaner, you can refine your designs as you learn.

I say “naïve”, but that’s perhaps overstating. What’s naïve is assuming that clean
code is all there is to success. Good engineering is maybe 20% of a project’s suc-
cess. Bad engineering will certainly sink projects, but modest engineering can
209

Mastering TDD

210
enable project success as long as the other 80% lines up right. From this perspec-
tive, TDD is overkill. It lets you write code with far fewer defects and a much
cleaner design than is common in the industry. However, those whose souls are
healed by the balm of elegance can find in TDD a way to do well by doing good.

TDD is also good for geeks who form emotional attachments to code. One of the
great frustrations of my young engineer’s life was starting a project with great
excitement, then watching the code base decay over time. A year later I wanted
nothing more than to dump the now-smelly code and get on to the next project.
TDD enables you to gain confidence in the code over time. As tests accumulate
(and your testing improves), you gain confidence in the behavior of the system. As
you refine the design, more and more changes become possible. My goal is to feel
better about a project after a year than I did in the starry-eyed beginning, and TDD
helps me achieve this.

Is TDD sensitive to initial conditions?

Some orders in which you take the tests seem to work very smoothly. Red/green/
refactor/red/green/refactor. You can take the same tests and implement them in a
different order, and it seems like there is not a way to advance in small steps. Is it
really true that one sequence of tests is an order of magnitude faster/easier to imple-
ment than another? Is this just because my implementation technique is not up to
the challenge? Is there something about the tests that should tell me to tackle them
in a certain order? If TDD is sensitive to initial conditions in the small, is it predict-
able in the large? (In the same way that little eddies in the Mississippi are unpre-
dictable, but you can count on 2,000,000 cfs. more or less at the river mouth.)

How does TDD relate to patterns?

All of my technical writings have been about trying to find fundamental rules that
generate behavior similar to experts. Partly this is because this is how I learn—I
find an expert to act like, then gradually figure out what is really going on. I’m cer-
tainly not looking for rules to be followed mechanically, although that is how the
mechanically minded have interpreted them.

My oldest daughter (hi Bethany! I told you I would get you in here—be glad it isn’t
more embarassing) spent several years learning to do multiplication fast. My wife
and I both prided ourselves on doing multiplication fast, and learned very quickly.
What was going on? Turns out that every time Bethany was faced with 6 x 9, she

would add 6 9 times (or 9 6 times, I suppose). Far from being a slow multiplier, she
was a really fast adder.

The effect that I have noticed, and that I hope others find, is that by reducing repeat-
able behavior to rules, applying the rules becomes rote and mechanical. This is
quicker than re-debating everything from first principles all the time. When along
comes an exception, or a problem that just doesn’t fit any of the rules, you have
more time and energy to generate and apply creativity.

This happened to me when writing the Smalltalk Best Practice Patterns. At some
point I decided to just follow the rules I was writing. It was much slower at first, to
be looking up the rules, or to be stopping to write a new rule. After a week, though,
I discovered that code was ripping off my fingertips that would have required a
pause for thought before. This gave me more time and attention for bigger thoughts
about design and analysis.

Another relationship between TDD and patterns is TDD as an implementation
method for pattern-driven design. Say we decide we want a Strategy for something.
We write a test for the first variant and implement it as a method. Then we con-
sciously write a test for the second variant, expecting the refactoring phase to drive
us to a Strategy. Robert Martin and I did some research into this style of TDD. The
problem is the design keeps surprising you. Perfectly sensible design ideas turn out
to be wrong. Better to just think about what you want the system to do, and let the
design sort itself out later.

Why does TDD work?

I saved the weirdest for last. Let’s assume for the moment that TDD helps teams
productively build loosely coupled, highly cohesive systems with low defect rates
and low cost maintenance profiles. (I’m claiming no such thing in general, but I
trust you to imagine impossible things.) How could such a thing happen?

Part of the effect certainly comes from reducing defects. The sooner you find and
fix a defect, the cheaper it is, often dramatically so (just ask the Mars Lander.)
There are plenty of secondary psychological and social effects from reduced
defects. My own practice of programming became much less stressful with I started
TDD. No longer did I have to worry about everything at once. I could make this test
run, and then all the rest. Relationships with my teammates became more positive. I
stopped breaking builds, and people could rely on my software to work. Customers
of my systems became more positive, too. A new release of the system just meant
211

Mastering TDD

212
more functionality, not a host of new defects to identify among all of their old
favorite bugs.

I’ve said “reduced defects.” Where do I get off claiming such a thing? Do I have
scientific proof?

No. No studies have categorically demonstrated the difference between TDD and
any of the many alternatives in quality, productivity, or fun. However, the anec-
dotal evidence is overwhelming, and the secondary effects are unmistakable. Pro-
grammers really do relax, teams really do develop trust, and customers really do
learn to look forward to new releases. “By and large,” I will say, although I haven’t
seen the opposite effect. You mileage may vary, but you’ll have to try it to find out.

Another advantage of TDD that may explain its effect is the way it shortens the
feedback loop on design decisions. The feedback loop for implementation deci-
sions is obviously short—seconds or minutes, followed by re-running the tests tens
or hundreds of times a day. The loop for design decisions goes between the design
thought—perhaps the API should like this, or perhaps the metaphor should be
that—and the first example, a test that embodies that thought. Rather than design-
ing and then waiting weeks or months for someone else to feel the pain or glory,
feedback comes in seconds or minutes as you try to translate your ideas into a plau-
sible interface.

A weirder answer to “why does TDD work?” comes from the fevered imagination
of complex systems. The inimitable Phlip says:

Adopt programming practices that “attract” correct code as a limit function, not as
an absolute value. If you write unit tests for every feature, and if you refactor to
simplify code between each step, and if you add features one at a time and only
after all the unit tests pass, you will create what mathematicians call an “attractor.”
This is a point in a state space that all flows converge on. Code is more likely to
change for the better over time instead of for the worse; the attractor approaches
correctness as a limit function.

This is the “correctness” that nearly all programmers get by with (except, of
course, for medical or aerospace software). But it’s better to explicitly understand
the attractor concept than deny it or disregard its importance.

What’s with the name?

• Development—The old phasist way of thinking about software development is
weakened because feedback between decisions is difficult if they are separated
in time. Development in this sense means a complex dance of analysis, logical

design, physical design, implementation, testing, review, integration and
deployment.

• Driven—I used to call TDD “test-first programming”. However, the opposite of
“first” is “last”, and lots of people test after they have programmed. There is a
naming rule that the opposite of a name should be at least vaguely unsatisfac-
tory (part of the appeal of structured programming is that no one wants to be
unstructured.) If you don’t drive development with tests, what do you drive it
with? Speculation? Specifications (ever notice that those two words come from
the same root?)

• Test—Automated, reified, concrete tests. Push a button and they run. One of the
ironies of TDD is that it isn’t a testing technique (the Cunningham Koan). It’s
an analysis technique, a design technique, really a technique for all the activities
of development.

How does TDD relate to the practices of Extreme Programming?

Some reviewers have been concerned that by my writing a book exclusively about
TDD, folks will take it as an excuse to ignore the rest of the advice in XP. For
example, if you test-drive, do you still need to pair? Here is a brief summary of how
the rest of XP enhances TDD and TDD enhances the rest of XP.

• Pairing—The tests you write in TDD are excellent conversation pieces when
you are pairing. The problem you avoid is that of the partners not agreeing on
what problem they are solving, even though they are trying to work on the same
code. This sounds crazy, but it happens all the time, especially when you are
learning to pair with someone. Pairing enhances TDD by giving you a fresh
mind to take over when you get tired. TDD’s rhythm can suck you in, and lead
you to continue program even when you’re tired. Your partner, though, is ready
to take the keyboard when you flag.

• Work fresh—On a related note, XP advises you to work when you are fresh and
stop when you are tired. When you can’t get that next test to work, or those two
tests to work together, it’s time for a break. Uncle Bob Martin and I were work-
ing on a line break algorithm once and we just couldn’t get it to work. We strug-
gled in frustration for a few minutes, but it was obvious we weren’t making
progress so we stopped.

• Continuous integration—The tests make an excellent resource enabling you to
integrate more often. You get another test working and the duplication removed,
you check in. The cycle can be 15-30 minutes instead of the 1-2 hours that I
usually shoot for. This may be part of the key to having larger teams of pro-
213

Mastering TDD

214
grammers on the same code base. As Bill Wake says, “An n2 problem is not a
problem if n is always 1.”

• Simple design—By coding only what you need for the tests and removing all
duplication, you automatically get a design that is perfectly adapted to the cur-
rent requirements and equally prepared for all future stories. The mind set that
you are looking for just enough design to have the perfect architecture for the
current system also makes writing the tests easier.

• Refactoring—The “Remove Duplication” rule is another way of saying “refac-
toring.” The tests, though, give you confidence that your larger refactorings
haven’t changed the behavior of the system. The higher your confidence, the
more aggressive you will be in trying large-scale refactorings that extend the
life of your system. By refactoring, you make writing the next round of tests that
much easier.

• Continuous delivery—If TDD tests really do improve the MTBF of your system
(a contention you will have to verify for yourself), you can put code into pro-
duction much more often without disrupting customers. Gareth Reeves makes
the analogy to day trading. In day trading, you close out your positions every
night, because you don’t risk around that you aren’t managing. In programming,
you like all of your changes in production because you don’t want code around
that you aren’t receiving concrete feedback on.

Darach’s Challenge

Darach Ennis has thrown down a gauntlet for extending the reach of TDD. He says:

For example, there are a lot of fallacies blowing around various engineering orga-
nizations and amongst various engineers that this book could help to dispell and
some of these are:

•You can’t test GUIs automaticaly (eg: Swing, CGI, JSP/Servlets/Struts)

•You can’t unit test distributed objects automaticaly (eg: RPC and Messaging
style, or CORBA/EJB and JMS)

•You can’t test-first develop your database schema (eg: JDBC?)

•There is no need to test third party or code generated by external tools

•You can’t test first develop a language compiler / interpreter from BNF to
production quality implementation

I’m not sure he’s right, but I’m also not sure he’s wrong. He’s given me something
to chew on as I think about how far to push TDD.

CHAPTER 36 Glossary
I tend to use technical terms without defining them. If we were talking together,
that glazed look in your eyes would tell me I’d wandered off into jargon land. In the
absence of your inestimable feedback, here are the terms reviewers have huh’d.

SBPP

value object

hashCode

inline

model code

method signature

green bar

red bar

TKO
215

Glossary

216
exception A way of transfering control to a method deeper in the call stack. Used to
allow normal processing to be written simply and centralize handling of strange
paths through the code (generally error conditions).

leptokurtotic

scalene

isoceles

equilateral

failure

error

transitive closure

CHAPTER 37 Appendix 1: Influence
Diagrams
You will find many examples of influence diagrams in the text. The idea of influ-
ence diagrams is taken from Gerald Weinberg’s excellent Quality Software Man-
agement series, particularly book 1 Systems Thinking (Dorset House, 1992). The
purpose of an influence diagram is to see how the elements of a system affect each
other.

Influence diagrams have three elements:

• Activities, notated as a word or short phrase

• Positive connections, notated as a directed arrow between two activities, mean-
ing that more of the source activity tends to create more of the destination activ-
ity or less of the source activity tends to create less of the destination activity

• Negative connections, notated as a directed arrow between two activities with a
circle over it, meaning that more of the source activity tends to create less of the
destination activity or less of the source activity tends to create more of the des-
tination activity

That’s lots of words for a simple concept. Here are some examples:

Circus attendance and hedge trimming

Figure N: Two seemingly unrelated activites
217

Appendix 1: Influence Diagrams

218
Eating positively connected to weight

Figure N: Positively connected activities

The more I eat, the more I weigh. The less I eat, the less I weigh. (Personal weight
is a far more complicated system than this, of course. Influence diagrams are mod-
els to help you understand some aspect of the system, not understand and control it
perfectly.)

Exercise negatively connected to weight

Figure N: Negatively connected activities

Feedback

Influence doesn’t just work one way. Often the effects of an activity come back
around to change the activity itself, either positively or negatively. For example:

Weight negatively connected to self esteem negatively connected
to eating positively connected to weight.

Figure N: Feedback

If my weight rises, my self-esteem drops, which makes we want to eat more, which
makes my weight rise, and so on. Any time you have a cycle in an influence dia-
gram, you have feedback.

There are two kinds of feedback:

• Positive

• Negative

Positive feedback causes systems to encourage more and more of an activity. You
can find positive feedback loops by counting the number of negative connections in
a cycle. If there are an even number of negative connections, you have a positive
feedback loop. The loop above is a positive feedback loop. It will cause you to keep
gaining weight until the influence of some other activity kicks in.

Negative feedback damps or reduces an activity. Cycles with an odd number of
negative connections are negative feedback loops.

The key to system design is

• Creating virtuous cycles, where positive feedback loops encourage the growth
of good activities

• Avoiding death spirals, where positive feedback loops encourage the growth of
unproductive or destructive activities

• Creating negative feedback cycles to prevent overuse of good activities

System Control

When choosing a system of software development practices, you’d like the prac-
tices to support each other so that you tend to do about the right amount of any
activity, even under stress. Here’s an example of a system of practices that leads to
insufficient testing:

Time pressure neg testing neg errors pos time pressure

Figure N: Not enough time to test reduces the available time

Under the pressure of time, you reduce the amount of testing, which increases the
number of errors, which increases the time pressure. Eventually some outside activ-
ity (like “Cash Flow Panic”) steps in to ship the software regardless.

When you have a system that isn’t behaving, you have a host of options:

• Drive a positive feedback loop the other directions. If you have a loop between
tests and confidence, and tests have been failing thus reducing confidence, you
can make more tests work to increase confidence in your ability to get more test
working.

• Introduce a negative feedback loop to control an activity which has grown too
large.

• Create or break connections to eliminate loops that are not helping.
219

Appendix 1: Influence Diagrams

220

CHAPTER 38 Fibonacci
In answer to a reviewer’s question, I posted a test-driven Fibonacci. Several
reviewers commented that this example turned on their light about how test-driven
development works. However, it is not long enough, nor does it demonstrate
enough of TDD techniques, to replace the existing examples. If your lights are still
dark after reading the main examples, take a look here and see.

The first test shows that fib(0) = 0. The implementation returns a constant.

public void testFibonacci() {
assertEquals(0, fib(0));

}

int fib(int n) {
return 0;

}

(I am just using the TestCase class as a home for the code, since it is only a single
function.)

The second test shows that fib(1) = 1.

public void testFibonacci() {
assertEquals(0, fib(0));
assertEquals(1, fib(1));
221

Fibonacci

222
}

I just put the second assert in the same method because there didn’t seem to be any
substantial communication value to writing “testFibonacciOfOneIsOne”.

There are several ways I could go to making this run. I’ll choose to treat 0 as a spe-
cial case:

int fib(int n) {
if (n == 0) return 0;
return 1;

}

The duplication in the test case is starting to bug me, and it will only get worse as
we add new cases. We can factor out the common structure of the assertions by
driving the test from a table of input and expected values.

public void testFibonacci() {
int cases[][]= {{0,0},{1,1}};
for (int i= 0; i < cases.length; i++)

assertEquals(cases[i][1], fib(cases[i][0]));
}

Now adding the next case requires 6 keystrokes and no additional lines:

public void testFibonacci() {
int cases[][]= {{0,0},{1,1},{2,1}};
for (int i= 0; i < cases.length; i++)

assertEquals(cases[i][1], fib(cases[i][0]));
}

Disconcertingly, the test works. It just so happens that our constant “1” is right for
this case as well. On to the next test:

public void testFibonacci() {
int cases[][]= {{0,0},{1,1},{2,1},{3,2}};
for (int i= 0; i < cases.length; i++)

assertEquals(cases[i][1], fib(cases[i][0]));
}

Hooray, it fails. Applying the same strategy as before (treating smaller inputs as
special cases), we write:

int fib(int n) {
if (n == 0) return 0;
if (n <= 2) return 1;
return 2;

}

Now we are ready to generalize. We wrote “2”, but we don’t really mean “2”, we
mean “1 + 1”.

int fib(int n) {
if (n == 0) return 0;
if (n <= 2) return 1;
return 1 + 1;

}

That first “1” is an example of fib(n-1):

int fib(int n) {
if (n == 0) return 0;
if (n <= 2) return 1;
return fib(n-1) + 1;

}

The second “1” is an example of fib(n-2):

int fib(int n) {
if (n == 0) return 0;
if (n <= 2) return 1;
return fib(n-1) + fib(n-2);

}

Cleaning up now, the same structure should work for fib(2), so we can tighten up
the second condition:

int fib(int n) {
if (n == 0) return 0;
if (n == 1) return 1;
return fib(n-1) + fib(n-2);

}

And there we have fibonacci, derived totally from the tests.
223

Fibonacci

224

	Test-Driven Development By Example
	CHAPTER 3 Preface
	Courage

	CHAPTER 4 Acknowledgements
	CHAPTER 1 Story Time
	CHAPTER 2 Section I: Money Example
	CHAPTER 3 Money Example
	CHAPTER 4 Degenerate Objects
	CHAPTER 5 Equality for All
	CHAPTER 6 Privacy
	CHAPTER 7 Franc-ly Speaking
	CHAPTER 8 Equality for All, Redux
	CHAPTER 9 Apples and Oranges
	CHAPTER 10 Makin’ Objects
	CHAPTER 11 Times We’re Livin’ In
	CHAPTER 12 Interesting Times
	CHAPTER 13 The Root of all Evil
	CHAPTER 14 Addition, Finally
	CHAPTER 15 Make It
	CHAPTER 16 Change
	CHAPTER 17 Mixed Currencies
	CHAPTER 18 Abstraction, Finally
	CHAPTER 19 Money Retrospective
	What Next?
	Metaphor
	JUnit Usage
	Code Statistics
	Process
	Test Quality
	One Last Review

	CHAPTER 20 Section II: xUnit
	CHAPTER 21 Set the Table
	CHAPTER 22 Cleaning Up After
	CHAPTER 23 Counting
	CHAPTER 24 Dealing with Failure
	CHAPTER 25 How Suite It Is
	CHAPTER 26 xUnit Retrospective
	CHAPTER 27 Section III: Patterns
	CHAPTER 28 Test-Driven Development Patterns
	Further Study

	CHAPTER 29 Red Bar Patterns
	Further Study

	CHAPTER 30 Testing Patterns
	Further Study

	CHAPTER 31 Green Bar Patterns
	Further Study

	CHAPTER 32 xUnit Patterns
	Further Study

	CHAPTER 33 Design Patterns
	Further Study

	CHAPTER 34 Refactoring
	Further Study

	CHAPTER 35 Mastering TDD
	How large should your steps be?
	What don’t you have to test?
	How do you know if you have good tests?
	How does TDD lead to frameworks?
	How much feedback do you need?
	When should you delete tests?
	How does the programming language and environment influence TDD?
	Can you test-drive enormous systems?
	Can you drive development with application-level tests?
	How do you switch to TDD mid-stream?
	Who is TDD intended for?
	Is TDD sensitive to initial conditions?
	How does TDD relate to patterns?
	Why does TDD work?
	What’s with the name?
	How does TDD relate to the practices of Extreme Programming?
	Darach’s Challenge

	CHAPTER 36 Glossary
	CHAPTER 37 Appendix 1: Influence Diagrams
	Feedback
	System Control

	CHAPTER 38 Fibonacci

